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V

Preface

The motivation for our work with MARSS models was a collaboration with
Rich Hinrichsen (Hinrichsen and Holmes, 2009). Rich developed a framework
for analysis of multi-site population count data using MARSS models and
bootstrap AICb. Our work (EEH and EJW) extended Rich’s framework, made
it more general, and led to the development of a parametric bootstrap AICb
for MARSS models, which allows one to do model-selection using datasets
with missing values(Ward et al., 2009; Holmes and Ward, 2010). Later, we
developed additional algorithms for simulation and confidence intervals. Dis-
cussions with Mark Scheuerell led to an extensive revision of the EM algorithm
and to the development of a general EM algorithm for constrained MARSS
models(Holmes, 2010). Discussions with Mark also led to a complete rewrite
of the model specification so that the package could be used for MARSS in
general – rather than simply the form of MARSS model used in our (EEH
and EJW) applications. Many collaborators have helped test the package; we
thank especially Yasmin Lucero, Mark Scheuerell, Kevin See, and Brice Sem-
mens. Development of the code into a R package would not have been possible
without Kellie Wills, who developed the package and wrote the majority of
the code outside of the algorithm functions.

The case studies used in this manual were developed for workshops on
analysis of multivariate time series data given at the Ecological Society meet-
ings since 2005 and taught by us (EEH and EJW) along with Yasmin Lucero,
Stephanie Hampton, Brice Semmens, and Mark Scheuerell. The case study on
extinction estimation and trend estimation was initially developed by Brice
Semmens and later extended by us for this manual. The algorithm behind the
TMU figure in case study 1 was developed during a collaboration with Steve
Ellner (Ellner and Holmes, 2008).

EEH and EJW are research scientists at the Northwest Fisheries Science
Center in the Mathematical Biology program. This work was conducted as
part of our jobs at the Northwest Fisheries Science Center, a research center for
NOAA Fisheries which is a US federal government agency. A CAMEO grant
from NOAA Fisheries supported Kellie Wills. During the initial stages of this
work, EJW was supported on a post-doctoral fellowship from the National
Research Council.

You are welcome to use the code and adapt it with attribution. It may not
be used in any commercial applications. Links to more code and publications
on MARSS applications can be found by following the links at EEH’s website
http://faculty.washington.edu/eeholmes Links to our papers that use these
methods can also be found at the same website.
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1

The MARSS package

MARSS stands for Multivariate Auto-Regressive(1) State-Space. The MARSS
package is designed for linear MARSS models with Gaussian errors. This class
of model is extremely important in the study of linear stochastic dynamical
systems, and these models are important in many different fields, especially
economics, engineering, genetics, physics and ecology. Appendix A gives a
selection of textbooks on MARSS models that we have found particularly
useful.

A MARSS model, with Gaussian errors, takes the form:

xt = Bxt−1 + u + et, where et ∼ MVN(0,Q) (1.1a)
yt = Zxt + a + ηt, where ηt ∼ MVN(0,R) (1.1b)

x1 ∼ MVN(π,V1) (1.1c)

The model includes random variables, parameters and data:

xt is a m× 1 column vector of the hidden states at time t. It is a realization
of the random variable Xt.

et is a m× 1 column vector of the process errors at time t. It is a realization
of a multivariate normal random variable with mean 0 and Σ = Q.

yt is a n× 1 column vector of the observed data at time t.
ηt is a n×1 column vector of the non-process errors at time t. It is a realization

of a multivariate normal random variable with mean 0 and Σ = R.
B is a parameter and is a m×m matrix.
u is a parameter and is a m× 1 column vector.
Q is a parameter and is a m×m variance-covariance matrix.
Z is a parameter and is a n×m matrix.
a is a parameter and is a n× 1 column vector.
R is a parameter and is a n× n variance-covariance matrix.
π is either a parameter or a fixed prior. It is a m× 1 matrix.
V1 is a fixed value. It is a m×m variance-covariance matrix.
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The meaning of the parameters in the MARSS models depends on the
application for which the MARSS model is being used. In the case studies, we
show examples of MARSS models used to analyze population count data and
animal tracking data, and appendix A gives a selection of papers from the
ecological literature. However, the MARSS package is not specific to popula-
tion modeling applications. The functions in the MARSS package are generic
functions for fitting MARSS models of the form in Equation (1.1).

1.1 What does the MARSS package do?

The MARSS package is designed to fit unconstrained and constrained MARSS
models. A constrained MARSS model is one in which some of the parameters
are constrained in the sense that they have fixed, free and/or shared values.
For example, let M and m be arbitrary matrix and column vector parameters.
The MARSS package allows one to specify and fit models where M and m
have the following forms.

M =

 a 0.9 c
−1.2 a 0

0 c b

 and m =


d
d
e

2.2


Version 1.0 of the MARSS package fits models via maximum-likelihood us-

ing a Kalman-EM algorithm1. The Kalman-EM algorithm is used because it
gives robust estimation for datasets replete with missing values and for models
with various constraints. The MARSS package also supplies functions for boot-
strap and approximate confidence intervals, parametric and non-parametric
bootstrapping, model selection (AIC and bootstrap AIC), simulation, and
bootstrap bias correction. Version 1.0 does not allow B or Z to be estimated
and a is constrained to act as a scaling factor. Version 2.0 is currently being
tested and it will allow B, Z, and a estimation along with less constrained
forms of Q and R.

1.2 Important notes about the algorithms used in
MARSS 1.0

MARSS 1.0 provides robost maximum-likelihood via an EM algorithm using
the Kalman filter/smoother. No attempt has been made to make the algo-
rithm computationally efficient and all code is in native R. Thus the model
1 The package fitting via quasi-Newton methods based on R’s optim function. This

can be especially useful for finishing off a Kalman-EM estimate especially when
the data to parameter ratio is high. However, when the ratio of data to parameters
is lower (as in many ecological applications), the quasi-Newton algorithm tends
to be quite fragile and sensitive to initial conditions.
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fitting is slow (relatively). Writing the algorithms in C would speed them up
considerably, but we have no plans to do that. EM algorithms will quickly get
in the vicinity of the maximum likelihood, but the final approach to the maxi-
mum is generally slow relative to quasi-Newton methods. On the flip side, EM
algorithms are quite robust to initial conditions choices unlike quasi-Newton
methods which can be fragile and highly sensitive to initial conditions. The
MARSS package allows one to use the BFGS method in optim to fit MARSS
models. The DLM package (search for it on CRAN) also provides fitting via
quasi-Newton methods (and Bayesian methods).

Restricted maximum-likelihood algorithms are also available for AR-1
state-space models, both univariate (Staples et al., 2004) and multivariate
(Hinrichsen, 2009). REML can give parameter estimates with lower vari-
ance than plain maximum-likelihood algorithms. However, the algorithms for
REML when there are missing values are not currently available, so you are
limited to data with no missing values (at the moment). Another maximum-
likelihood method is data-cloning which adapts MCMC algorithms used in
Bayesian analysis for maximum-likelihood (Lele et al., 2007).

Data with cycles, from say age-structure or dynamical interactions, are
difficult to analyze and both REML and Kalman-EM approaches will give
poor estimates for this type of data. The slope method (Holmes, 2001), is
more ad-hoc but is relatively robust to those problems. Holmes et al. (2007)
used the slope method in a large study of data from endangered and threatened
species; Ellner and Holmes (2008) showed that the slope estimates are close
to the theoretical minimum uncertainty. However estimates using the slope
method are not easily extended to multi-variate data and it is not a true
maximum-likelihood methods.

Missing values are seamlessly accommodated with the MARSS package.
Simply specify the way missing values are denoted in the data set (default is
miss.value=-99). The likelihood computations are exact and will deal appro-
priately with missing values. Parameter estimates and hidden state estimates
use the Kalman filter/smoother and EM algorithm with missing value modifi-
cations. The presence of missing values, however, limits R to being a diagonal
matrix (if estimated) and Z to being fixed. In addition, no innovations (non-
parametric) bootstrapping can be done if there are missing values. Instead
parametric bootstrapping must be used.

You should be aware that maximum-likelihood estimates of variance in
MARSS models are fundamentally biased, regardless of the algorithm used.
This bias is more severe when one or the other of R or Q is very small, and
the bias does not go to zero as sample size goes to infinity. The bias arises
because variance is constrained to be positive. Thus if R or Q is essentially
zero, the mean estimate will not be zero and thus the estimate will be biased
high while the corresponding bias of the other, not close to zero, variance will
be biased low. You can generate unbiased variance estimates using a bootstrap
estimate of the bias. The function MARSSparamCIs() will do this. However be
aware that adding an estimated bias to a parameter estimate will lead to an



4 1 The MARSS package

increase in the variance of your parameter estimate. The amount of variance
added will depend on sample size.

1.3 Troubleshooting

There are two numerical errors and warnings that you may see when fitting
MARSS models: ill-conditioning and degeneracy. The Kalman and EM algo-
rithms need inverses of matrices. If those matrices become ill-conditioned, for
example all elements are close to the same value, then the algorithm becomes
unstable. MARSS will print warning messages if the algorithm is becoming
unstable and you can set control$trace=1, to see details of where the algo-
rithm is becoming unstable. Whenever possible, you should avoid using shared
π values in your model (Eqn. (1.1)). The way our algorithm deals with V1

tends to make this case unstable, especially if R is not diagonal. In general, es-
timation of a non-diagonal R is more difficult, more prone to ill-conditioning,
and needs more data.

The second numerical error you may see is a degeneracy warning. This
means that one of the elements on the diagonal of your Q or R matrix is
going to zero. It will take the EM algorithm forever to get to zero. Since
the likelihood can spike up very fast near a degenerate solution, the log-
likelihood value reported by MARSS will be too small because it will be based
on degenerate Q or R diagonal elements that are very small but nonetheless
non-zero. BFGS will have the same problem, although it will often get a bit
closer to the degenerate solution. If you are using method="kem", MARSS
will warn you if it looks like the solution is degenerate and you can use the
function find.degenerate() to find the degenerate elements or look at the
$errors element of the output.

The algorithms in MARSS 1.0 are designed for cases where the Q and R
diagonals are all non-miniscule. For example, the EM update for equation for
U will grind to a halt (not update U) if Q is tiny (like 1E-7). Conversely,
the BFGS equations are likely to miss the maximum-likelihood when R is
tiny because then the likelihood surface becomes hyper-sensitive to π. The
solution is to use the degenerate likelihood function for the likelihood cal-
culation and the EM update equations. The relatively straight-forward but
it will not be implemented until MARSS 2.0. However, these concerns affect
the likelihood value reported at the maximum-likelihood parameters, but the
actual parameter estimates will change very little on the absolute scale, so
your point estimates, CIs, bias estimates, etc. are still valid. Model selection
though will be dubious because the likelihoods reported by MARSS won’t be
the real maximums.
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The main MARSS functions

The MARSS package is object-based. It has two main types of objects: a model
object which is class=“marssm”and a maximum-likelihood fitted model object
which is class=“marssMLE”. A marss model object specifies the structure of
the model to be fitted. It is an R code version of the MARSS equation. A
marssMLE object specifies both the model and the information necessary for
fitting (initial conditions, controls, method). If the model has been fitted, the
marssMLE object will also have the parameter estimates and (optionally) CIs
and bias.

2.1 Fitting a model and creating marss, marssMLE
objects

While it is possible and sometimes to desirable to create marss and marssMLE
objects from scratch, generally it will be easier to work with the function
MARSS(),

MLEobj=MARSS(data, constraint=list(), ..., fit=TRUE) This function
will fit a MARSS model to the data using constraint list which is a list of
strings describing the structure of the model parameter matrices. The de-
fault model has a one-to-one correspondence between the state processes
and observation time series (Z is identity matrix). The default has a diago-
nal observation error matrix (R) and unconstrainted process error matrix
(Q). MLEobj is a marssMLE object where the estimated parameter matri-
ces are in MLEobj$par. The MARSS() function takes care of error-checking
and model structure. If fit=FALSE, it returns a minimal marssMLE ob-
ject that is ready for passing to a fitting function (below) but with no par
element.
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2.2 Fitting a MARSS model

The following core functions are designed to work with ‘unfitted’ marssMLE
objects, that is a marssMLE object without the par because parameters
are not yet estimated. Users do not normally need to call the MARSSkem or
MARSSoptim functions since MARSS() will call those. Below “MLEobj” means
the argument is a marssMLE object. Note, these functions can be called with
a marssMLE object with a par element, but these functions will update that
element.

MLEobj=MARSSkem(MLEobj) This will fit a MARSS model via the Kalman-EM
algorithm to the data using a properly specified marssMLE object, which
has data, the marss model object and the necessary initial condition and
control elements. See the appendix on the object structures in the MARSS
package. MARSSkem does no error-checking. See is.marssMLE(). MARSSkem
uses MARSSkf described below.

MLEobj=MARSSoptim(MLEobj) This will fit a MARSS model via the BFGS al-
gorithm provided in optim(). This requires a properly specified marssMLE
object, such as would be passed to MARSSkem.

MLEobj=MARSSmcinit(MLEobj) This will perform a Monte Carlo initial con-
ditions search and update the marssMLE object with the best initial con-
ditions from the search.

is.marssMLE(MLEobj) This will check that a marssMLE object is properly
specified and ready for fitting. This should be called before MARSSkem
or MARSSoptim is called. This function is not typically needed if using
MARSS() since MARSS() builds the model object for the user and does
error-checking on model structure.

2.3 Using a fitted marssMLE object (class=marssMLE)

The following functions use an marssMLE object that has a populated par
element, i.e. a marssMLE object returned from one of the fitting functions
(MARSS(), MARSSkem, MARSSoptim). Below “modelObj” means the argument
is a marss model object and “MLEobj” means the argument is a marssMLE
object. Type ?function.name to see information on usage and examples.

kf=MARSSkf(data, MLEobj$par, ...) This will compute the expected val-
ues of the hidden states given data and a MARSS model object via the
Kalman filter (to produce estimates conditioned on 1 : t − 1) and the
Kalman smoother (to produce estimates conditioned on 1 : T . The func-
tion also returns the exact likelihood of the data conditioned on the model
using the innovations algorithm with missing value corrections. See Chap-
ter 5. Other Kalman filter output is also output (kf is a list of output);
see ?MARSSkf for more details.
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MLEobj=MARSSaic(MLEobj) This adds model selection criteria, AIC, AICc,
and AICb, to a marssMLE object.

boot=MARSSboot(MLEobj) This returns a list containing bootstrapped pa-
rameters and data via parametric or innovations bootstrapping.

MLEobj=MARSShessian(MLEobj) This adds a numerically estimated Hessian
matrix to a marssMLE object.

MLEobj=MARSSparamCIs(MLEobj) This adds standard errors, confidence in-
tervals, and bootstrap estimated bias for the ML parameters using boot-
strapping or the Hessian to the passed in marssMLE object.

sims=MARSSsimulate(MLEobj$par) This returns simulated data from a MARSS
model specified via the parameter matrices in MLEobj$par (this is a list
with elements Q, R, U, etc). Typically one would pass in MLEobj$par as
one’s parameter list, but you could also construct the list manually.

sim.data=MARSSsimulate(MLEobj$par, ...) This returns simulated data
set from a MARSS model with parameters specified by MLEobj$par.

paramVec=MARSSvectorizeparam(MLEobj) This returns the estimated (and
only the estimated) parameters as a vector. This is useful for storing the
results of simulations and for writing functions that fit MARSS models
using R’s optim function. The function can also be used to assign free
values to a marssMLE object. See ?MARSSvectorizeparam for other uses.

new.MLEobj=MARSSvectorizeparam(MLEobj, paramVec) This returns a marssMLE
object in which the estimated parameters (which are in MLEobj$par
along with the fixed values) are replaced with the values in paramVec.
This is useful when you have bootstrapped parameter sets. You can
then create proper marssMLE objects from the bootstrapped parameters
using boot.MLEobj=MARSSvectorizeparam(MLEobj, bootparamVec)and
simulate from those using MARSSsimulate.

2.4 Functions for marss model objects (class=marssm)

is.marssm(modelObj) This will check that the free and fixed matrices in a
marss model object are properly specified. This function is not typically
needed if using MARSS() since MARSS() builds the marss model object for
the user and does error-checking on model structure.

summary(modelObj) This will print the model parameter matrices showing
the fixed values (in parentheses) and the location of the estimated ele-
ments. The estimated elements are shown as g1, g2, g3, ... which indicates
which elements are shared (forces to have the same value. For example,
an i.i.d. R matrix would appear as a diagonal matrix with just g1 on the
diagonal.
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MARSS model specification in the core
functions

Most users will not directly work with the core functions nor build marss model
objects from scratch. Instead, they will usually interact with the core functions
via the function MARSS() described in chapter 4. With the MARSS() function,
the user specifies the model structure with text strings (“diagonal”, “uncon-
constrained”, etc.) and MARSS() builds the basic model structure. However,
a basic understanding of the structure of a marss model object is necessary
if one wants to fit more flexible models or to interact directly with the core
functions.

The first step of model specification is to write down (e.g. on paper) the
model in matrix form (Equation 1.1) with notes on the dimensions (rows
and columns) of each parameter and for x and y. In the core functions, the
parameters in the MARSS model must be passed as matrices of the correct
dimension, and the parameters in the R functions correspond one-to-one to
the mathematical equation. For example, u must be passed in as a matrix of
dimension c(m,1). The function will return an error if anything else is passed
in (including a matrix with dim=c(1,m)).

3.1 Specifying the fixed and free components of the
parameters

In a marss model object, each parameter must be specified by a pair of ma-
trices: free which gives the location and sharing of the estimated elements in
the parameter matrix and fixed which specifies the location and value of the
fixed element in the parameter matrix. For example, Q is specified by free$Q
and fixed$Q.

The fixed matrix specifies the values (numeric) of the fixed (meaning not
estimated) elements. In the fixed matrix, the free (meaning estimated or fitted)
elements are denoted with NA. The following shows some common examples
of the fixed matrix using fixed$Q as the example. Each of the other fixed
matrices for the other parameters uses the same pattern.
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� Q is unconstrained, so there are no fixed values

fixed$Q =

NA NA NA
NA NA NA
NA NA NA


� Q is a diagonal matrix, so the off-diagonals are fixed at 0. The diagonal

elements will be estimated.

fixed$Q =

NA 0 0
0 NA 0
0 0 NA


� Q is fixed, i.e. will not be estimated rather all values in the Q matrix are

fixed.

fixed$Q =

0.1 0 0
0 0.1 0
0 0 0.1


The free matrix specifies which elements are estimated and specifies how

(and whether) the free elements are shared. In the free matrix, the fixed
elements are denoted NA. The following shows some common examples of free
using free$Q as the example. free can be passed in as a character matrix or
a numeric matrix, but if numeric, the numeric will be changed to character
(thus 0 becomes “0” and is the name “0” not the number 0).

� Q is a diagonal matrix in which there is only one, shared, value on the
diagonal. Thus there is only one Q parameter.

free$Q =

 1 NA NA
NA 1 NA
NA NA 1

 or

 ”a” NA NA
NA ”a” NA
NA NA ”a”


Here “1” does not mean “number 1” but rather the name of the shared
parameter is “1”.

� Q is a diagonal matrix in which each of the diagonal elements are different.

free$Q =

 1 NA NA
NA 2 NA
NA NA 3

 or

”north” NA NA
NA ”middle” NA
NA NA ”south”


� Q has one value on the diagonal and another one on the off-diagonals.

There are no fixed values in Q.

free$Q =

1 2 2
2 1 2
2 2 1

 or

 ”a” ”b” ”b”
”b” ”a” ”b”
”b” ”b” ”a”


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� Q is unconstrained. There are no fixed values in Q in this case. Note that
since, Q is a variance-covariance matrix, it must be symmetric across the
diagonal.

free$Q =

1 2 3
2 4 5
3 5 6



3.2 Limits on the forms of the parameter constraints
(MARSS version 1.0)

MARSS vrs. 1.0 will allow any combination of fixed and shared values in a and
u, but in R, Q, B, and Z there are limits to what forms these matrices can
take. These limitations have to do with the way the EM algorithm is coded
for version 1.0. Version 2.0 will remove many of these restrictions.

� R and Q can be fixed, unconstrained, diagonal with any pattern of shared
values on the diagonal, a matrix with one value on the diagonal and another
on the off-diagonals (an “equal var-cov” matrix).

� If there are missing values in the data, R must be diagonal (or fixed).
� B cannot be estimated. It must be fixed but it need not be diagonal. How-

ever, all its eigen values must fall on the unit circle (abs(eigen(B)$values)<=1)).
� Z cannot be estimated. It must be fixed. Although in all our examples, Z

is a design matrix (meaning only 0s and 1s and all row sums equal to 1),
you can have other fixed Z’s.

The other limitation is that one must specify a model that has only one
solution. The core MARSS functions will allow you to attempt to fit an im-
proper model (one with multiple solutions). If you do this accidentally, it may
or may not be obvious that you have a problem. The MARSS estimation func-
tions may chug along happily and return a solution. Careful thought about
your model structure and the structure of the estimated parameter matrices
will help you determine if your model is under-constrained and unsolvable.
Basically, take care when using MARSS core functions directly and remember
that it will not prevent you from fitting an under-constrained model. This is
not a problem when using the function MARSS(). The MARSS() function builds
the marss model for the user and is written in such a way that it prevents
users from specifying an under-constrained models.
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The MARSS() function

The MARSS() function is an interface to the MARSS core functions and allows
users to fit models and to use text strings to specify the model structure. The
MARSS model is

xt = Bxt−1 + u + et−1, where et−1 ∼ MVN(0,Q) (4.1a)
yt = Zxt + a + ηt, where ηt ∼ MVN(0,R) (4.1b)

x1 ∼ MVN(π,V1) (4.1c)

The y is a n × T matrix of observations and the x are the m hidden state
processes (or trajectories). For example, a y data matrix of 3 inputs measured
for 10 time steps would look like

y =

1 2 −99 ... 8
2 5 3 ... 5
1 −99 2 ... 7


where -99 denotes a missing value. x might look like (here m = 2):

x =
[

0.8 2.2 3 ... 7.1
1.5 2.5 2.5 ... 6

]
Z is a n × m design matrix of zeros and ones where the row sums equal 1.
Z is specifying which observation time series, yi,1:T , is associated with which
hidden state process, xj,1:T . Z is like a look up table with one row for each
of the n observation time series and one column for each of the m hidden
processes. A “1” in row i column j means that y time series i is measuring the
j-th x trajectory. Otherwise the value in Zij = 0.

In the MARSS() function, the user specifies the model by passing in a
parameter constraint list:

MARSS(data, constraint=list(Z=Z.constraint, B=B.constraint,

U=U.constraint, Q=Q.constraint, A=A.constraint,

R=R.constraint, x0=pi.constraint, V0=V1.constraint) )
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data must be a n×T matrix, that is time goes across columns. The argument
constraint is a list of text strings, factors or a matrix that specifies the form
of the MARSS model. The defaults are

Z.constraint="identity" each y in y corresponds to one x in x
B.constraint="identity" no interactions between the x’s in x
U.constraint="unequal" the u’s in u are all different
Q.constraint="diagonal and unequal" both process errors are inde-
pendent but have different variances
R.constraint="diagonal and equal" the observations are i.i.d.
A.constraint="scaling" a scaling factor
pi.constraint="unequal" all initial states are different
V0.constraint="zero" x initial condition is treated as fixed but unknown

Note that there is no option to change the how the variance of the initial states
(V1) is treated because this variance is never estimated. It is either fixed to 0
to treat x0 as fixed but unknown or both π and V1 are fixed to form a prior.
The other possible constraint options for each parameter are listed below.
We show the forms using m = 3 (the number of hidden state processes) as an
example.

4.1 Process equation constraints

4.1.1 B.constraint

B is a m×m matrix. In MARSS 1.0, B must be fixed.

B.constraint="identity" The B matrix is the identity matrix:1 0 0
0 1 0
0 0 1


B.constraint=matrix(..., nrow=m, ncol=m) Passing in a m ×m ma-
trix, means that B is fixed to the values in the matrix. The matrix must
be numeric. Using the string ‘zero’, sets B = 0.

4.1.2 u constraints

The u constraint has the following options:

U.constraint="equal" There is only u parameter.uu
u


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U.constraint="unequal" or U.constraint="unconstrained" These are
equivalent. There are m u parameters.u1

u2

u3


U.constraint=as.factor(c(...)) The u constraint is specified as a
length m character or numeric vector of class factor. The vector of factors
specifies which values in u are shared. For example, U.constraint=factor(c(1,1,2))
means that u has the following structure:u1

u1

u2


There are two u parameters in this case. The factor levels can be either nu-
meric or character. c(1,1,2) is the same as c("north","north","south").

U.constraint=matrix(..., nrow=m, ncol=1) Passing in am×1 matrix,
means that u is fixed to the values in the matrix. The matrix must be
numeric. In MARSS version 1.0, u cannot vary in time, even if fixed. u
can be set to all zeros (a m× 1 matrix) by setting U.constraint="zero";
you might want to use this if you de-trended your data. You can pass in a
matrix with fixed values and NAs: 0.1

NA
NA


it will interpret this as your fixed$U$ matrix. The fixed values will be
set to the fixed values and the NAs will be estimated (the estimates are
independent, not forced to be equal).

4.1.3 Q constraint

The Q constraint has the following options:

Q.constraint="diagonal and equal" There is only one process variance
term in this case. σ2 0 0

0 σ2 0
0 0 σ2


Q.constraint="diagonal and unequal" There are m process variance
parameters in this case. σ2

1 0 0
0 σ2

2 0
0 0 σ2

3


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Q.constraint="unconstrained" There are values on the diagonal and
off-diagonals of Q and variances and covariances are all different. σ2

1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3


There are m process variance parameters and (m2 −m)/2 covariances in
this case, so (m2 +m)/2 parameters.

Q.constraint="equalvarcov" There is one process variance parameter
and one covariance, so 2 parameters. σ2 σi,j σi,j

σi,j σ2 σi,j
σi,j σi,j σ2


Q.constraint=as.factor(c(...)) The Q constraint is specified is a
length m character or numeric vector of class factor. This specifies that Q
is diagonal and the vector of factors specifies which values on the diagonal
are shared. For example, Q.constraint=factor(c(2,1,2)) means that
Q takes the form: σ2

2 0 0
0 σ2

1 0
0 0 σ2

2


Q.constraint=factor(c(1,1,2)) means that Q takes the form:σ2

1 0 0
0 σ2

1 0
0 0 σ2

2


The factor levels can be either numeric or character. c(1,1,2) is the same
as c("north","north","south").

Q.constraint=matrix(..., nrow=m, ncol=m) Passing in a m ×m ma-
trix, means that Q is fixed to the values in the matrix. The matrix must
be numeric. Note if m = 1, you still need to wrap its value in matrix()
so that’s its class is matrix. You can pass in a diagonal matrix with fixed
values and NAs: NA 0 0

0 0.1 0
0 0 NA


It will interpret this as your fixed$Q$ matrix. The fixed values will be
set to the fixed values and the NAs will be estimated (the estimates are
independent, not forced to be equal). For this case, the matrix must be
diagonal.
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4.1.4 π constraints

This set the constraints on the initial conditions, x1. pi.constraint has the
following options:

pi.constraint="equal" There is only initial state parameter.ππ
π


Warning: specifying shared π values will tend to produce ill-conditioned
matrices in the algorithm and lead to numerical instability. Avoid using
pi.constraint=0 if possible.

pi.constraint="unequal" or pi.constraint="unconstrained" These
are equivalent. There are m initial state parameters.π1

π2

π3


pi.constraint=factor(c(...)) The initial states constraint is specified
is a length m character or numeric vector of class factor. The vector of
factors specifies which initial states have the same value. For example,
pi.constraint=factor(c(1,1,2)) means that the initial states have the
following structure: π1

π1

π2


There are two initial state parameters in this case. The factor levels can be
either numeric or character. c(1,1,2) is the same as c("north","north","south").
Warning: specifying shared π values will tend to produce ill-conditioned
matrices in the algorithm and lead to numerical instability. Avoid if pos-
sible.

pi.constraint=matrix(..., nrow=m, ncol=1) Passing in a m× 1 ma-
trix, means that the initial states are fixed to the values in the ma-
trix. The matrix must be numeric. You can set x0 to zero by using
pi.constraint="zero". You can pass in a matrix with fixed values and
NAs:  10

NA
NA


It will interpret this as your fixed$x0$ matrix. The fixed values will be
set to the fixed values and the NAs will be estimated (the estimates are
independent, not forced to be equal).
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4.1.5 V1 constraints

The initial state variance must be fixed. The default behavior is to treat x1

as fixed but unknown1 In this case, V1=0. You can also set V0 to a non-zero
value but in that case π must be fixed. This would mean you use a fixed prior
for the initial state.

V0.constraint=matrix(..., nrow=m, ncol=m) Passing in a m×m ma-
trix, means that the initial state variance is fixed to the values in the
matrix. The matrix must be numeric and be a proper variance-covariance
matrix.

4.2 Observation equation constraints

4.2.1 Z constraint

In the MARSS() function, Z is normally a n ×m design matrix that specifies
which xi hidden state time series correspond to which yj time series2. Each
yj time series (each row in y) corresponds to one and only one xi time series
(row in x). The Z constraint is normally specified as a length n vector of class
factor. The i-th element of this vector specifies which population trajectory
the i-th observation time series belongs to. Here are some examples; see the
examples and case studies chapters for more examples.

Z.constraint=factor(c(1,1,1)) All y time series are observing the
same (and only) hidden state trajectory x. Thus n = 3 and m = 1.

Z =

1
1
1


Z.constraint=factor(c(1,2,3)) Each y time series corresponds to a
different hidden state trajectory. The is the default Z constraint and in
this case n = m.

Z =

1 0 0
0 1 0
0 0 1


Z.constraint=factor(c(1,1,2)) The first two y time series corresponds
to one hidden state trajectory and the third y time series corresponds to
a different hidden state trajectory. Here n = 3 and m = 2.

1 Shumway and Stoffer use x at t = 0 as the initial state, but we follow Gharamani’s
approach and use x at t = 1 as the initial state. Both approaches give the same
answer but the EM update equations are very slightly different.

2 However, you can pass in other fixed but non-design Z matrices.
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Z =

 1 0
1 0
0 1


The Z constraint can be specified using either numeric or character factor
levels. c(1,1,2) is the same as c("north","north","south")

Z.constraint="identity" This is the default behavior. This means Z
is a n × n identity matrix and m = n. If n = 3, it is the same as
Z.constraint=factor(c(1,2,3)).

Z.constraint=matrix(..., nrow=n, ncol=m) Passing in a n × m ma-
trix, means that Z is fixed to the values in the matrix. The matrix must
be numeric. Z does not need to be a design matrix.

4.2.2 a constraint

Only A.constraint="scaling" or a fixed a is allowed. If “scaling”, a is a
scaling factor (like an intercept) where one of the y associated with each
x is set to zero and the rest are estimated. Unless you know the correct
scaling, because say you simulated the data or you de-meaned the data,
you should use this default. To set a to a fixed value (not estimated),
use A.constraint=matrix(..., nrow=n, ncol=m). The matrix must be nu-
meric. To fix a to zero, if say you de-meaned your data, use A.constraint="zero".

Note, actually you can circumvent the restriction on a by passing in a
matrix with NAs (for estimated elements) or passing in a fixed/free pair.
But be aware that it is very easy to make your model unsolveable (an infinite
number of solutions) if you try to estimate more that ni − 1 aa’s, where ni
is the number of y’s for one x. If Z is identity, then ni = 1 and you can
estimate no aa’s; all must be fixed. We fixed to 0 by default in this case;
but you could fixed to whatever you want by passing in a fixed a matrix
(A.constraint=matrix()).

4.2.3 R constraint

The R constraint is completely analogous to the Q constraint, except that it
is n×n instead of m×m. Its allowable constraints are affected by the presence
of missing data points in y. If data are missing, then R must be diagonal.
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Algorithms used in the MARSS package

5.1 Kalman filter and smoother

The MARSS model is a linear dynamical system with discrete time and Gaus-
sian errors. In 1960, Rudolf Kalman published the Kalman filter (Kalman,
1960), a recursive algorithm that solves for the expected value of the hid-
den state(s) at time t conditioned on the data up to time t: E(Xt|yt1). The
Kalman filter gives the optimal (lowest mean square error) estimate of the
unobserved xt based on the observed data up to time t for this class of linear
dynamical system. The Kalman smoother (Rauch et al., 1965) solves for the
expected value of the hidden state(s) conditioned on all the data: E(Xt|yT1 ).
If the errors in the stochastic process are Gaussian, then the estimators from
the Kalman filter and smoother are also the maximum-likelihood estimates.

However, even if the the errors are not Gaussian, the estimators are opti-
mal in the sense that they are estimators with the least variability possible.
This robustness is one reason the Kalman filter is so powerful – it provides
well-behaving estimates of the hidden states for all kinds of multivariate au-
toregressive processes, not just Gaussian processes. The Kalman filter and
smoother are widely used in time-series analysis, and there are many text-
books covering it and its applications. In the interest of giving the reader a
single point of reference, we use Shumway and Stoffer (2006) as our reference
and adopt their notation (for the most part).

The MARSSkf function provides the following Kalman filter and smoother
outputs:

xtt1 The expected value of Xt conditioned on the data up to time t− 1.
xtt The expected value of Xt conditioned on the data up to time t.
xtT The expected value of Xt conditioned on all the data from time 1 to T .

This the smoothed state estimate.
Vtt1 The variance of Xt conditioned on the data up to time t− 1. Denoted

P t−1
t in section 4.2 in Shumway and Stoffer (2006).
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Vtt The variance of Xt conditioned on the data up to time t. Denoted P tt
in section 4.2 in Shumway and Stoffer (2006).

VtT The variance of Xt conditioned on all the data from time 1 to T .
Vtt1T The covariance of Xt and Xt−1 conditioned on all the data from time

1 to T .
Kt The Kalman gain. This is part of the update equations and relates to the

amount xtt1 is updated by the data at time t to produce xtt.
J This is similar to the Kalman gain but is part of the Kalman smoother.

See equation 4.51 in Shumway and Stoffer (2006).
Innov This has the innovations at time t, defined as ηt ≡ yt-E(Yt). These are

the residuals, the difference between the data and their predicted values.
See equation 4.40 in Shumway and Stoffer (2006).

Sigma This has the Σt, the variance-covariance matrices for the innovations
at time t. This is used for the calculation of confidence intervals, the s.e.
on the state estimates and the likelihood. See equation 4.41 in Shumway
and Stoffer (2006) for the Σt calculation.

logLik The log likelihood of the data conditioned on the model parameters.
See the section below on the likelihood calculation.

5.2 The exact likelihood

The likelihood of data given a specified MARSS model is part of the output of
the MARSSkf function. The likelihood computation is based on the innovations
form of the likelihood (Schweppe, 1965) and uses the output from the Kalman
filter:

logL(Θ|data) = − N

2 log(2π)
− 1

2

(
T∑
t=1

log |Σt|+
T∑
t=1

(ηt)
>Σ−1

t ηt

)
(5.1)

where N is the total number of data points and |Σt| is the determinant of the
innovations variance-covariance matrix. Reference equation 4.67 in Shumway
and Stoffer (2006); however there are a few differences between the log likeli-
hood output by MARSSkf and that described in Shumway and Stoffer (2006).

The standard likelihood calculation (equation 4.67 in Shumway and Stoffer
(2006)) is biased when there are missing values in the data. The missing data
modifications discussed in section 4.4 in Shumway and Stoffer (2006) do not
correct for this bias. Harvey (1989) discusses at length that the standard
formula (equation 4.67 in Shumway and Stoffer (2006)) is an inexact likelihood
when there are missing values. The bias is minor if there are few missing
values, but it becomes severe as the number of missing values increases. Many
ecological datasets may have over 25% missing values and this level of missing
values leads to a very biased likelihood if one uses the inexact formula. Harvey
(1989) provides some non-trivial ways to compute the exact likelihood. We use
instead the exact likelihood correction for missing values that is presented in
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section 12.3 in Brockwell and Davis (1991). This solution is straight-forward
to implement.

The correction involves the following changes to ηt and Σt in the equation
5.1. Suppose the value yi,t is missing. First, the corresponding i-th value of ηt
is set to 0. Second, the i-th diagonal value of Σt is set to 1 and the off-diagonal
elements on the i-th column and i-th row are set to 0.

5.3 Parameter estimation

5.3.1 Kalman-EM algorithm

The MARSS package provides a maximum-likelihood algorithm which uses
an Expectation-Maximization (EM) algorithm (function MARSSkem) with the
Kalman smoother. EM algorithms are widely used algorithms that extend
maximum-likelihood estimation to cases where there are hidden random vari-
ables in a model (Dempster et al., 1977; McLachlan and Krishnan, 2008;
Harvey, 1989; Harvey and Shephard, 1993).

The EM algorithm finds the maximum-likelihood estimates of the param-
eters, Θ̂, in a MARSS model using an iterative process. Starting with an
initial set of parameters1, which we will denote Θ̂1, an updated parameter set
Θ̂2 is obtaining by finding the Θ that maximizing the expected value of the
likelihood over the distribution of the states (X) conditioned on Θ1”

Θ̂2 = arg max
Θ

EX|Θ̂1
[logL(Θ|YT

1 = yT1 ,X)] (5.2)

Then using Θ̂2, an updated parameter set Θ̂3 is calculated using equation
(5.2). This is repeated until the expected log-likelihood stops increasing (or
increases less than some set tolerance level).

Implementing this algorithm is actually fairly straight-forward, hence its
popularity.

1. Set an initial set of parameters, Θ̂1

2. E step: using the model for the hidden states (x) and Θ̂1, calculate the
expected values of X conditioned on all the data yT1 . Also calculate ex-
pected values of any functions of X, g(X), that appear in your expected
log likelihood function.

3. M step: put those E(X|YT
1 = yT1 , Θ̂1) and E(g(X)|YT

1 = yT1 , Θ̂1) into
your expected log likelihood function in place of X (and g(X)) and max-
imize with respect to Θ. This gives you Θ̂2

4. Repeat the E and M steps until the log likelihood stops increasing

1 You can choose these however you wish, however choosing something not too far
off from the correct values will make the algorithm go faster.
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The EM equations in our algorithm, which we term the Kalman-EM algo-
rithm, are extensions of those in Shumway and Stoffer (1982) and Ghahramani
and Hinton (1996). Our Kalman-EM algorithm is an extended version of those
presented in these references because our algorithm is for cases where there
are constraints within the parameter matrices (shared values, diagonal struc-
ture, block-diagonal structure, ...) and where there are fixed values within the
parameter matrices. The appendices of Holmes and Ward (2010) give the full
derivation of our EM algorithm. The missing values modification for the R
update equation is presented in Chapter 6 in Shumway and Stoffer (2006).

The EM algorithm is a hill-climbing algorithm and like all hill-climbing
algorithms can get stuck on local maxima. The MARSS package includes
a Monte-Carlo initial conditions searcher (function MARSSmcinit) based on
Biernacki et al. (2003) to minimize this problem. EM algorithms are also
known to get close to the maximum very quickly but then creep toward the
absolute maximum. Quasi-Newton methods find the absolute maximum much
faster, but they can be highly sensitive to initial conditions. We have found
that with MARSS models, quasi-Newton methods (at least using optim) will
commonly converge far from the maximum even when started close to the
known maximum. For this reason, the Monte Carlo initial condition search
that works for EM algorithms may not work for Newton algorithms.

5.4 Parametric and innovations bootstrapping

Bootstrapping can be used to construct frequentist confidence intervals on the
parameter estimates (Stoffer and Wall, 1991) and to compute the small-sample
AIC corrector for MARSS models (Cavanaugh and Shumway, 1997); the func-
tions MARSSparamCIs and MARSSaic do these computations. The MARSSboot
function does parametric and innovations bootstrapping of MARSS models.
The innovations bootstrap essentially bootstraps the residuals after model-
fitting (called innovations) and uses the algorithm by Stoffer and Wall (1991).
This is a semi-parametric bootstrap since is uses, partially, the maximum-
likelihood parameter estimates. This algorithm cannot be used if there are
missing values in the data. Also for short time series, it gives biased boot-
straps because one cannot resample the first few innovations. MARSSboot also
provides a fully parametric bootstrap based on using the maximum-likelihood
MARSS model to simulate data from which bootstrap parameter estimates
are obtained. Our research (Holmes and Ward, 2010) indicates that this pro-
vides unbiased bootstrap parameter estimates, and it works with datasets with
missing values. Lastly, MARSSboot also allows one to construct approximate
CIs by bootstrapping from a numerically estimated Hessian matrix.
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5.5 Simulation and forecasting

The MARSSsimulate function simulates from a MARSS model using a list with
specific parameter matrices. It use the mvrnorm function to produce draws of
the process and observation errors from multivariate normal distributions for
each time step. The user must pass in a parameter list (for example from
MLEobj$par).

5.6 Model selection

The package provides a MARSSaic function for computing AIC, AICc and
AICb. The latter is a small-sample corrector for autoregressive state-space
models. The bias problem with AIC and AICc for short time series data
has been shown in Cavanaugh and Shumway (1997) and Holmes and Ward
(2010). AIC and AICc tend to select overly complex MARSS models when the
time series data are short. AICb corrects this bias. The algorithm for the non-
parameteric AICb is given in Cavanaugh and Shumway (1997). The algorithm
in Cavanaugh and Shumway (1997) uses the innovations bootstrap (Stoffer
and Wall, 1991), which means it cannot be used when there are missing data.
We added a parametric bootstrap option for the AICb computation (Holmes
and Ward, 2010). This allows one to compute AICb when there are missing
data and it provides unbiased AIC even for short time series. See Holmes
and Ward (2010) for discussion and testing of parametric AICb for MARSS
models.

AICb is comprised of the familiar AIC fit term, −2 logL, plus a penalty
term that is the mean difference between the log likelihood the data under the
bootstraped maximum-likelihood parameter estimates and the log likelihood
of the data under the original maximum-likelihood parameter estimate:

AICb = −2 logL(Θ̂|y) + 2
1
Nb

Nb∑
i=1

−2 log
L(Θ̂∗(i)|y)
L(Θ̂|y)

(5.3)

where Θ̂ is the maximum-likelihood parameter set under the original data,
yT1 ≡ y, Θ̂∗(i) is a maximum-likelihood parameter set estimated from the i-
th bootstrapped data set, y∗(i), and Nb is the number of bootstrap data sets.
It is important to notice that the likelihood in the AICb equation is L(Θ̂∗|y)
not L(Θ̂∗|y∗). In other words, we are taking the average of the likelihood of
the original data given the bootstrapped parameter sets.





6

Examples

The case studies walk through detailed and multi-level analyses. Here we
show a series of quick examples with little explanatory text. All examples
that analyze a real dataset use the WA harbor seal dataset, which has five
observation time series. First set up the data:

dat = t(harborSealWA)

dat = dat[2:nrow(dat),] #remove the year row

6.1 Fit different MARSS models to a dataset

6.1.1 A model with five independent hidden states, one for each
observation time series

Fit is the default model for MARSS. n = m, the observation errors are i.i.d.
and the process erros are independent and have different variances. The ele-
ments in u are all different (meaning, they are not forced to be the same).

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


u1

u2

u3

u4

u5

+


e1,t
e2,t
e3,t
e4,t
e5,t

 , et ∼ MVN

0,


q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r



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To fit this model, use MARSS(). The function will output the basic model
structure and the time to convergence.

kemfit = MARSS(dat)

abstol reached in 28 iterations and parameters appear converged.
Alert: with less than 100 iterations, the convergence diagnostics will be uncertain.

MARSS fit is
Estimation method: kem
Estimation converged in 28 iterations.
Log-likelihood: 21.84028
AIC: -11.68055 AICc: -1.606480

Estimate
Q.1 0.03353
Q.2 0.01175
Q.3 0.00765
Q.4 0.00554
Q.5 0.06303
R.1 0.00948
U.1 0.06839
U.2 0.07164
U.3 0.04182
U.4 0.05241
U.5 -0.00271
x0.1 6.05542
x0.2 6.79635
x0.3 6.70269
x0.4 5.88259
x0.5 6.60160

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

The default method is the Kalman-EM algorithm (method="kem"). You can
use a quasi-Newton method (BFGS) by setting method="BFGS". The quasi-
Newton method can be a bit fragile. In fact, these two BFGS examples will
generate numerical errors.

kemfit.bfgs = MARSS(dat, method="BFGS")

If you wanted to use the Kalman-EM fit as the initial conditions, pass in the
inits arguments.

kemfit.bfgs2 = MARSS(dat, method="BFGS", inits=kemfit$par)
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6.1.2 A model with five correlated hidden states

Same model but allow the hidden states to have temporally correlated process
errors. Fit this model:
x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


u1

u2

u3

u4

u5

+


e1,t
e2,t
e3,t
e4,t
e5,t

 , et ∼ MVN

0,


q1 c1,2 c1,3 c1,4 c1,5
c1,2 q2 c2,3 c2,4 c2,5
c1,3 c2,3 q3 c3,4 c3,5
c1,4 c2,4 c3,4 q4 c4,5
c1,5 c2,5 c3,5 c4,5 q5





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit use MARSS() with the constraint argument set. silent is also set to
suppress printing. Type print(kemfit) to see the fit.

kemfit = MARSS(dat, constraint=list(Q="unconstrained"),silent=TRUE)

6.1.3 A model with five equally correlated hidden states

Same model but allow specify that there is only one process error variance
and one process error covariance. Fit this model:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


u1

u2

u3

u4

u5

+


e1,t
e2,t
e3,t
e4,t
e5,t

 , et ∼ MVN

0,


q c c c c
c q c c c
c c q c c
c c c q c
c c c c q





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit:

kemfit = MARSS(dat, constraint=list(Q="equalvarcov"))

To see the parameter estimates, use
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print(kemfit)

MARSS fit is
Estimation method: kem
Estimation converged in 98 iterations.
Log-likelihood: 31.31512
AIC: -36.63025 AICc: -30.24428

Estimate
Q.2 0.00880
Q.1 0.00847
R.1 0.01735
U.1 0.06942
U.2 0.07860
U.3 0.04061
U.4 0.05074
U.5 -0.00909
x0.1 6.08013
x0.2 6.75781
x0.3 6.70508
x0.4 5.79460
x0.5 6.61629

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

6.1.4 Five hidden state trajectories with a “North” and a “South”
u parameter

Fit a model with five independent hidden states where each observation time
series is an independent observation of a different hidden trajectory but the
hidden trajectories 1-3 share their u parameter, while hidden trajectories 4-5
share theirs . This is the model:
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x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


un
un
un
us
us

+


e1,t
e2,t
e3,t
e4,t
e5,t

 , et ∼ MVN

0,


q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit use:

kemfit = MARSS(dat, constraint=list(U=factor(c("N","N","N","S","S"))))

Type kemfit or print(kemfit) to see the parameter estimates.

6.1.5 Fix the observation error variance

Here we fit the same model but with a known (or at least fixed) observation
error variance. This is the model:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


un
un
un
us
us

+


e1,t
e2,t
e3,t
e4,t
e5,t

 , et ∼ MVN

0,


q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


η1,t
η2,t
η3,t
η4,t
η5,t

 ,

ηt ∼ MVN

0,


0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 0.1




To fit this model:

kemfit = MARSS(dat, constraint=list(U=factor(c("N","N","N","S","S")),

R=diag(0.1,5)))
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6.1.6 One hidden state and five i.i.d. observation time series

Instead of five hidden state trajectories. Specify that there is only one and all
the observations are of that one trajectory. Fit this model:

xt = xt−1 + u+ et, et ∼ N(0, q)


y1,t
y2,t
y3,t
y4,t
y5,t

 =


1
1
1
1
1

xt +


0
a1

a2

a3

a4

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




Note the default R constriant is “diagonal and equal” so we can leave this off
when specifying the constraint argument. To fit this model:

kemfit =

MARSS(dat, constraint=list(Z=factor(c(1,1,1,1,1))))

6.1.7 One hidden state and five independent observation time
series with different variances

Fit this model:

xt = xt−1 + u+ et, et ∼ N(0, q)


y1,t
y2,t
y3,t
y4,t
y5,t

 =


1
1
1
1
1

xt +


0
a1

a2

a3

a4

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5




To fit this model:

kemfit =

MARSS(dat, constraint=list(Z=factor(c(1,1,1,1,1)),

R="diagonal and unequal"))

6.1.8 Two hidden state trajectories

Fit a model with two hidden states (north and south) where observation time
series 1-3 are for the north and 4-5 are for the south. Make the hidden state
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process independent but have the same process variance. Make the observation
errors i.i.d. (default). Make the u elements equal. This is the model:[

xn,t
xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
u
u

]
+
[
en,t
es,t

]
, et ∼ MVN

(
0,
[
q 0
0 q

])

y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0
1 0
1 0
0 1
0 1


[
xn,t
xs,t

]
+


0
a1

a2

0
a3

+


η1,t
η2,t
η3,t
η4,t
η5,t

 , ηt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit the model:

kemfit =

MARSS(dat, constraint=list(Z=factor(c("N","N","N","S","S")),

Q="diagonal and equal",U="equal"))

6.2 Show a summary of the model showing the fixed and
shared groups

summary(kemfit$model)

Output is not shown because it’s long, but it prints each matrix with the
fixed elements denoted with their values and the free elements denoted by
“g#”, meaning “group #”. Each shared element is a group. For example, a
model with a diagonal Q matrix with one variance would be printed as a
diagonal matrix with “g1” on all the diagonal elements.

6.3 Compute CIs on a fitted model

The function MARSSparamCIs() is used to compute confidence intervals. The
function can compute approximate CIs using a numerically estimated Hessian
matrix (method="hessian") or via parametric (method="parametric") or
non-parametric (method="innovations") bootstrapping.

6.3.1 Approximate confidence intervals from an estimated Hessian
matrix

#default uses an est Hessian matrix

kem.with.hess.CIs = MARSSparamCIs(kemfit)
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Use print or just type the marssMLE object name to see the CIs:

print(kem.with.hess.CIs)

MARSS fit is
Estimation method: kem
Estimation converged in 16 iterations.
Log-likelihood: 8.446231
AIC: -0.892463 AICc: 1.430118

ML.Est Std.Err low.CI up.CI
A.2 0.79399 0.06174 0.67299 0.9150
A.3 0.27323 0.06277 0.15021 0.3963
A.5 -0.06798 0.08924 -0.24289 0.1069
Q.1 0.00927 0.00533 -0.00118 0.0197
R.1 0.03430 0.00668 0.02119 0.0474
U.1 0.04309 0.01567 0.01237 0.0738
x0.1 6.20472 0.11398 5.98132 6.4281
x0.2 6.24855 0.12839 5.99691 6.5002

CIs calculated at alpha = 0.05 via method=hessian
Use MARSSparamCIs to compute CIs and bias estimates.

6.3.2 Confidence intervals from a parametric bootstrap

Use method="innovations" to use a non-parametric bootstrap (no missing
values allowed in the data in this case).

kem.w.boot.CIs=MARSSparamCIs(kemfit,method="parametric",nboot=10)

#nboot should be more like 1000, but set low for example's sake

print(kem.w.boot.CIs)

MARSS fit is
Estimation method: kem
Estimation converged in 16 iterations.
Log-likelihood: 8.446231
AIC: -0.892463 AICc: 1.430118

ML.Est Std.Err low.CI up.CI Est.Bias Unbias.Est
A.2 0.79399 0.03923 0.733974 0.8470 -0.006783 0.7872
A.3 0.27323 0.06144 0.177906 0.3564 0.002254 0.2755
A.5 -0.06798 0.07368 -0.152139 0.0612 -0.014816 -0.0828
Q.1 0.00927 0.00406 0.000883 0.0136 0.002213 0.0115
R.1 0.03430 0.00590 0.025883 0.0419 -0.000426 0.0339
U.1 0.04309 0.01571 0.013602 0.0590 0.005034 0.0481
x0.1 6.20472 0.09246 6.091297 6.3629 -0.025514 6.1792
x0.2 6.24855 0.19781 6.119864 6.7083 -0.052602 6.1959
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CIs calculated at alpha = 0.05 via method=parametric
Bias calculated via parametric bootstrapping with 10 bootstraps.

6.4 Work with vectors of just the estimated params

Often it is useful to just have a vector of the estimated parameters. For exam-
ple, if you are writing a call to optim, you’ll need a vector of just the estimated
parameters.

MARSSvectorizeparam(kemfit)

A.2 A.3 A.5 Q.1
0.793991591 0.273229103 -0.067975309 0.009274083

R.1 U.1 x0.1 x0.2
0.034295919 0.043085650 6.204717299 6.248551859

If you want to replace the estimated parameter values with different values,
you can use the same function. Then you might want to find out the likelihood
of the data using those new values. You compute that with the Kalman filter
function MARSSkf(), sending it the data and the parameters as a list.

6.5 Determine which variance elements have not
converged

If your data are short relative to the number of parameters you are estimat-
ing, then you are liable to find that one of the diagonal variance elements is
degenerate (is zero). Try the following:

dat.short = dat[,1:10]

kem.degen = MARSS(dat.short, silent=2)

abstol reached at 48 iterations but some parameters have not converged.

This will print a short warning that one of the variance elements has not
converged (silent=2 means brief messages). Type cat(kem.degen$errors)
to see the warnings. It may be that your tolerance is too high and if you
just ran a few more iterations then variance will converge. So first try setting
control$minit high and see if the warning goes away. Setting minit forces a
minimum number of iterations. 200 should be enough.

kem.200 = MARSS(dat.short, control=list(minit=200), silent=2)

abstol reached at 200 iterations but some parameters have not converged.
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One of the parameters, probably one of the variances, is has not fully con-
verged. Type cat(kem.200$errors) to see which parameter(s) is not con-
verging. Or you can use find.degenerate() to plot the log parameter value
against the log iteration number to figure out which one is dropping. Use
kem.200 because this plot needs at least 100 iterations to look good. We can
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Fig. 6.1. A diagnostic plot showing which diagonal variance element is not con-
verging. This is a log-log plot of iteration versus the log of the variance estimate. It
should be flat. Diagonal parameter elements that are not flat are shown in red.

try a few solutions. First perhaps we are just trying to estimate too many
variances. We can try using only one Q variance and one U:

kem.small=MARSS(dat.short,constraint=list(Q="diagonal and equal",

U="equal"),control=list(minit=200),silent=2)

abstol reached at 200 iterations but some parameters have not converged.

No, there are simply not enough data to estimate both process and observation
variances. For the EM algorithm, you cannot set Q to a fixed small value
because then U would converge very, very slowly simply because of the nature
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of the U update equations. However, you can try a quasi-Newton method with
Q fixed small. Here we use one Q variance and fix it small.

kem.bfgs.degen=MARSS(dat.short,constraint=list(

Q=diag(1E-12,5),U="equal"),method="BFGS")

Success! Converged in 33 interations.

MARSS fit is
Estimation method: BFGS
Estimation converged in 33 iterations.
Log-likelihood: 11.90747
AIC: -9.814944 AICc: -1.199559

Estimate
R.1 0.0239
U.1 0.1025
x0.1 6.1650
x0.2 6.8738
x0.3 6.6347
x0.4 5.8492
x0.5 6.5958

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

We could also just set the degenerate variances, Q2, Q3, and Q4, to a small
value and estimate Q1 and Q5:

kem.bfgs.degen=MARSS(dat.short,constraint=list(

Q=diag(c(NA,1E-12,1E-12,1E-12,NA),5),U="equal"),method="BFGS")

Success! Converged in 31 interations.

MARSS fit is
Estimation method: BFGS
Estimation converged in 31 iterations.
Log-likelihood: 12.73636
AIC: -7.472718 AICc: 8.890919

Estimate
Q.1 0.0220
Q.25 0.0500
R.1 0.0162
U.1 0.1024
x0.1 6.0625
x0.2 6.8746
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x0.3 6.6354
x0.4 5.8496
x0.5 6.5958

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

6.6 Simulate data

6.6.1 Simulated data from a fitted MARSS model

You can easily simulate data from a fitted model using MARSSsimulate().

my.sim.data=MARSSsimulate(kemfit$par, nsim=2, tSteps=100)$sim.data

Then you might want to estimate parameters from that simulated data. Above
we created two simulated datasets (nsim=2). We will fit to the first one. Here
the default settings for MARSS are used.

kem.sim.1 = MARSS(my.sim.data[,,1])

Then we might like to see the likelihood of the second set of simulated data
under the model fit to the first set of data. We do that with the Kalman filter
function.

MARSSkf(my.sim.data[,,2], kem.sim.1$par, miss.value = -99)$logLik

[,1]
[1,] 2.982701

There are no missing values in our simulated data, but we still need to pass
miss.value into MARSSkf.

6.6.2 Simulated data from a user-built MARSS model

This shows you how to build up a model from scratch and simulate from that
using MARSSsimulate().

nsim = 20 # number of simulations

burn = 10 # length of burn in period

tSteps = 25

m=3 #number of hidden state trajectories

B = diag(1,m);

A = array(0, dim=c(m,1))

Z = diag(1,m)

U = array(0.01, dim=c(m,1))

Q = diag(0.3, m) #independent process errors

R = diag(0.01, m) #independent obs errors
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x0 = array(10, dim=c(m,1)) #initial conditions, really x_1

V0 = array(0,dim=c(m,m)) #leave this 0

the.par.list =

list(Z=Z, A=A, R=R, B=B, U=U, Q=Q, x0=x0, V0=V0 )

# simulate data

sim = MARSSsimulate(the.par.list, nsim=nsim, tSteps=burn+tSteps)

# take off the burn

obs = sim$sim.data[,(burn+1):(burn+tSteps),] #obs is m x T x nsim

6.6.3 Correlation between estimated parameters

We can use a for loop along with MARSSvectorizeparam() to estimate pa-
rameters for each dataset, and then assemble the estimates into a matrix.

for(i in 1:nsim){

dat=obs[,,i]

kem.sim=MARSS(dat, silent=TRUE)

if(i==1) par.sim=MARSSvectorizeparam(kem.sim)

else par.sim=rbind(par.sim, MARSSvectorizeparam(kem.sim))

}

We could also use MARSSboot() to do this. However, MARSSboot() is designed
to take a marssMLE object (such as would be returned from MARSSkem). To
use MARSSboot, we need to make a marssMLE object which has information
on initial conditions and maximization options. An easy way to do this is to
use MARSS with fit=FALSE. This will return a correctly formed marssMLE ob-
ject with no estimated parameters. The only difference between this method
and the above is that MARSSboot uses a single start condition for the maxi-
mization search while the approach above will compute a different start for
each simulated data set. They should give the same answers (assuming they
are not finding local minima) but the computation speeds and convergence
times may differ.

#generate some data just to fit with MARSS to make marssMLE obj

tmp = MARSSsimulate(the.par.list, nsim=1, tSteps=tSteps)$sim.data

#dim of sim.data is n x T x nsim

tmp = tmp[,,1]

#use fit FALSE to just return an marssMLE obj

sim.marssMLE = MARSS(tmp, silent=TRUE, fit=FALSE)

sim.marssMLE$par = the.par.list

par.sim = MARSSboot(sim.marssMLE,

nboot=20, output="parameters", sim="parametric")$boot.params

#boot.paras is #params x nboot; change the dim order

par.sim=t(par.sim)

We could also build the marssMLE object from scratch, by making a list with
elements par, start, and control. The first is the.par.list above and the
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latter are used by the maximization routine (see ?marssMLE). If you want a
non-parameteric bootstrap, use sim="innovations".

Then we use pairs() to get a quick visual look at how the parameters are
correlated (or not) and how variable they are (Figure 6.2).
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Fig. 6.2. The parameter pairs plotted against each other using the command
pairs(par.sim).

6.7 Compute bootstrap AIC for a model

This computes a parametric bootstrap AIC for the model kemfit using the
function MARSSaic(). Use output="AICbb" to produce a non-parameter boot-
strap AIC (no missing data allowed in data in this case).

kemfit.with.AICb = MARSSaic(kemfit, output = "AICbp",

Options = list(nboot = 10, silent=TRUE))

#nboot should be more like 1000, but set low here for example sake

print(kemfit.with.AICb)
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MARSS fit is
Estimation method: kem
Estimation converged in 16 iterations.
Log-likelihood: 8.446231
AIC: -0.892463 AICc: 1.430118 AICbp(param): 3.433653

Estimate
A.2 0.79399
A.3 0.27323
A.5 -0.06798
Q.1 0.00927
R.1 0.03430
U.1 0.04309
x0.1 6.20472
x0.2 6.24855

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.
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Case studies: instructions

The case studies walk you through some analyses of multivariate population
count data using MARSS models and the MARSS function. This will take you
through both the conceptual step (with pencil and paper) and a R step which
translates the conceptual model into code.

Set-up

� If you haven’t already, install the MARSS package. Type from the com-
mand line: (Windows) install.packages("MARSS.zip", repos = NULL)
or (Mac/Unix) install.packages("MARSS.tar.gz", repos = NULL). Mac
users need Xtools installed for this to work. You will need write permis-
sions for your R program directories to install packages. See the help pages
on CRAN for workarounds if you don’t have write permission.

� Type in library(MARSS) at the R command line. Now you should be
ready.

� Each case study comes with an associated script file: Case_Study_#.R with
the code you need to do the exercises. Type show.doc(MARSS,Case_study_#.R)
to open up a copy of the case study script.

Tips

� summary(foo$model), where foo is a fitted model object, will print de-
tailed information on the structure of the MARSS model that was fit in the
call foo = MARSS(logdata). This allows you to double check the model
you fit. print(foo) will print a ‘English’ version of the model structure
along with the parameter estimates.

� When you run MARSS, it will output the number of iterations used. If you
reached the maximum, re run with control=list(maxit=...) set higher
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than the default (5000). If it says your model variances did not converge,
try running with control=list(minit=...) set higher.

� If you mis-specify the model, MARSS will post an error that should give
you an idea of the problem (make sure silent=FALSE to see full error re-
ports). Remember, the number of rows in your data is n, time is across the
columns, and the length of the vector or factors passed in for constraint$Z
must be m, the number of x hidden state trajectories in your model.

� If you are fitting to population counts, your data must be logged (base e)
before being passed in. The default missing value indicator is -99. You can
change that by passing in miss.value=....

� Running MARSS(data), no arguments except your data, will fit MARSS
model with m = n, a diagonal Q matrix with m variances, and i.i.d.
observation errors.
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Case Study 1: Count-based PVA for data with
observation error

8.1 The Problem

Estimates of extinction and quasi-extinction risk are an important risk met-
ric used in the management and conservation of endangered and threatened
species. By necessity, these estimates are based on data that contain both vari-
ability due to real year-to-year changes in the population growth rate (process
errors) and variability in the relationship between the true population size and
the actual count (observation errors). Classic approaches to extinction risk
assume the data have only process error, i.e. no observation error. In reality,
observation error is ubiquitous both because of the sampling variability and
also because of year-to-year (and day-to-day) variability in sightability.

In this case study, we are use a Kalman filter to fit a univariate (meaning
one time series) state-space model to count data for a population. We will
compute the extinction risk metrics given in Dennis et al. (1991), however
instead of using a process-error only model (as is done in the original paper),
we use a model with both process and observation error. The risk metrics
and their interpretations are the same as in Dennis et al. (1991). The only
real difference is how we compute σ2, the process error variance. However this
difference has a large effect on our risk estimates, as you will see.

In this case study, we use a density-independent model, which is the same
as the Gompertz model (4.1) with B = 1. Density-independence is often a
reasonable assumption when doing a PVA because we do such calculations for
at-risk populations that are either declining or that are well below historical
levels (and presumably carrying capacity). In an actual PVA, it is necessary
to justify this assumption and if there is reason to doubt the assumption, one
tests for density-dependence (Taper and Dennis, 1994) and does sensitivity
analyses using state-space models with density-dependence (Dennis et al.,
2006).

The univariate model is written:
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xt = xt−1 + u+ et where et ∼ N(0, σ2) (8.1)
yt = xt + εt where εt ∼ N(0, η2) (8.2)

where yt is the logarithm of the observed population size at time t, xt is the
unobserved state at time t, u is the growth rate, and σ2 and η2 are the process
and observation error variances, respectively. In the R code to follow, σ2 is
denoted Q and η2 is denoted R (because the functions we are using are also
for multivariate state-space models and those models use Q and R for the
respective variance-covariance matrices).

8.2 Simulated data with process and observation error

We’ll start by using simulated data to see the difference between data and
estimates from a model with process error only versus a model that also
includes observation error. For our simulated data, we’ll used a decline of
5% per year, process variability of 0.01 (typical for big mammals), and a
observation variability of 0.05 (which is a bit on the high end). We’ll randomly
set 10% of the values as missing. Here’s the code:

Set things up.

sim.u = -0.05 # growth rate

sim.Q = 0.01 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 30 # number of years of data to generate

fracmissing = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance

years = seq(1:nYr) # sequence 1 to nYr

x = rep(NA,nYr) # replicate NA nYr times

y = rep(NA,nYr)

First generate the population sizes using equation 8.1:

x[1]=init

for(t in 2:nYr){

x[t] = x[t-1]+ sim.u + rnorm(1,mean=0,sd=sqrt(sim.Q)) }

Add observation error and missing values to generate the observed data using
equation 8.2:

for(t in 1:nYr){

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R))

}

missYears = sample(years[2:(nYr-1)],floor(fracmissing*nYr),

replace = FALSE)

y[missYears]=-99
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Fig. 8.1. Plot of nine simulated population time series with process and observation
error. Circles are observation and the dashed line is the true population size.

Now let’s look at the simulated data. Stochastic population trajectories
show much variation, so it is best to look at a few at once. In figure 8.1, nine
simulations from the identical parameters (above) are shown.

Example 8.1 (Look at the effect of parameter values on parameter
estimates)

A good way to get a feel for reasonable σ2 values is to generate simulated data
and look at the time series. As a biologist, you probably have a pretty good idea
of what kind of year-to-year population changes are reasonable for your species.
For example for most of the mammalian species I work with, the maximum
population yearly increase would be around 50% (the population could go from
1000 to 1500 in one year), but some of the fish species could easily double or
even triple in a really good year. Your observed data may bounce around a lot
for many different reasons having to do with sightability, sampling error, age-
structure, etc., but the underlying population trajectory is constrained by the
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kinds of year-to-year changes in population size that are biologically possible
for your species. σ2 describes those true population changes.

Run the Exercise 1 code several times using different parameter values to get
a feel for how different the time series can look based on identical parameter
values. You can cut and paste from the pdf into the R command line. Typical
vertebrate σ2 values are 0.002 to 0.02, and typical η2 values are 0.005 to 0.1.
A u of -0.01 translates to an average 1% per year decline and a u of -0.1
translates to an average 10% per year decline (approximately).

Example 8.1 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

par(mfrow=c(3,3))

sim.u = -0.05

sim.Q = 0.01

sim.R = 0.05

nYr= 30

fracmiss = 0.1

init = 7

years = seq(1:nYr)

for(i in 1:9){

x = rep(NA,nYr) # vector for ts w/o measurement error

y = rep(NA,nYr) # vector for ts w/ measurement error

x[1]=init

for(t in 2:nYr){

x[t] = x[t-1]+ sim.u + rnorm(1, mean=0, sd=sqrt(sim.Q)) }

for(t in 1:nYr){

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R)) }

missYears =

sample(years[2:(nYr-1)],floor(fracmiss*nYr),replace = FALSE)

y[missYears]=-99

plot(years[y!=-99], y[y!=-99],

xlab="",ylab="log abundance",lwd=2,bty="l")

lines(years,x,type="l",lwd=2,lty=2)

title(paste("simulation ",i) )

}

legend("topright", c("Observed","True"),

lty = c(-1, 2), pch = c(1, -1))
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8.3 Parameter estimation

8.3.1 Maximum-likelihood estimates for a model with observation
error

We put the simulated data through the Kalman-EM algorithm in order to
estimate the parameters, u, σ2, and η2, and population sizes. These are the
estimates using a model with process and observation variability. The function
call is kem = KalmanEM(data), where data is a vector of logged (base e)
counts with missing values denoted by -99. After this call, the ML parameter
estimates are kem$U, kem$Q and kem$R. There are numerous other outputs
from the KalmanEM function. To get a list of the outputs type in names(kem).
Note that kem is just a name; I could have called the output foo. Here’s some
code to fit to the simulated time series.

kem = MARSS(y)

Let’s look at the parameter estimates for the nine simulated time series in
figure 8.1 to get a feel for the variation. I used the KalmanEM function on each
time series to produce parameter estimate for each simulation. The estimates
are followed by the mean (over the nine simulations) and the true values:

kem.params

kem.U kem.Q kem.R
sim 1 -0.07902509 0.0234388953 0.02236336
sim 2 -0.06068495 0.0008058277 0.04862847
sim 3 -0.02250114 0.0007448882 0.05714435
sim 4 -0.09376831 0.0004844166 0.03966861
sim 5 -0.07801179 0.0066723293 0.03173187
sim 6 -0.06962905 0.0153981804 0.02421338
sim 7 -0.05187095 0.0007315877 0.03918987
sim 8 -0.06355806 0.0010361937 0.07342396
sim 9 -0.05067251 0.0080478148 0.06645177
mean sim -0.06330243 0.0063733482 0.04475729
true -0.05000000 0.0100000000 0.05000000

As expected, the estimate parameters do not exactly match the true parame-
ters, but the average should be fairly close (although 9 simulations is a small
sample size). Also note that although we don’t get u quite right, our estimates
are usually negative. Thus our estimates usually indicate declining dynamics.

The Kalman-EM algorithm also gives an estimate of the true population
size with observation error removed. This is in kem$states. Figure 8.2 shows
the KalmanEM estimated true states of the population over time as a solid
line. Note that the solid line is considerably closer to the actual true states
(dashed line) than the observations. On the other hand with certain datasets,
the Kalman filter can get it quite wrong as well!
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Fig. 8.2. The circles are the observed population sizes with error. The dashed lines
are the true population sizes. The solid thin lines are the estimates of the true
population size from the Kalman-EM algorithm

8.3.2 Maximum-likelihood estimates for a model with no
observation error

We used the Kalman-EM algorithm to estimate the mean population rate u
and process variability σ2 under the assumption that the count data have
observation error. However, the classic approach to this problem, referred to
as the “Dennis model” (Dennis et al., 1991), uses a model that assumes the
data have no observation error; all the variability in the data is assumed to
result from process error. This approach works fine if the observation error in
the data is low, but not so well if the observation error is high. We will next
fit the data using the classic approach so that we can compare and contrast
parameter estimates from the different methods.

Using the estimation method in (Dennis et al., 1991), our data need to be
re-specified as the observed population changes (delta.pop) between censuses
along with the time between censuses (tau). We re-specify the data as follows:

den.years = years[y!=-99] # the non missing years

den.y = y[y!=-99] # the non missing counts
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den.n.y = length(den.years)

delta.pop = rep(NA, den.n.y-1 ) # population transitions

tau = rep(NA, den.n.y-1 ) # step sizes

for (i in 2:den.n.y ){

delta.pop[i-1] = den.y[i] - den.y[i-1]

tau[i-1] = den.years[i] - den.years[i-1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop)
on the time between censuses (tau) while setting the regression intercept to 0.
The slope of the resulting regression line is an estimate of u, while the variance
of the residuals around the line is an estimate of σ2. The regression is shown
in Figure 8.3. Here is the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)

# note: the "-1" specifies no intercept

den91.u = den91$coefficients

den91.Q = var(resid(den91))
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Fig. 8.3. The regression of log(Nt+τ )− log(Nt) against τ . The slope is the estimate
of u and the variance of the residuals is the estimate of Q.
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Here are the parameters values for the data in figure 8.2 using the process-
error only model:

den91.params

den91.U den91.Q
sim 1 -0.06682166 0.07846643
sim 2 -0.09821425 0.11290470
sim 3 -0.03809608 0.12675472
sim 4 -0.09884205 0.09076249
sim 5 -0.07692896 0.08565855
sim 6 -0.06181460 0.06697673
sim 7 -0.02793446 0.10103334
sim 8 -0.07721575 0.19808143
sim 9 -0.07355381 0.17743383
mean sim -0.06882462 0.11534136
true -0.05000000 0.01000000

Notice that the u estimates are similar to those from the Kalman-EM algo-
rithm, but the σ2 estimate (Q) is much larger. That is because this approach
treats all the variance as process variance, so any observation variance in the
data is lumped into process variance (in fact it appears as 2 × the observation
variance).

Example 8.2 (Look at the variability in parameter estimates)

In this example, you’ll look at how variable the parameter estimates are by
generating multiple (nsim) simulated data sets and then estimating parameter
values for each. You’ll compare the Kalman-EM estimates to the estimates
using a process error only model (i.e. ignoring the observation error).
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Example 8.2 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

sim.u = -0.05 # growth rate

sim.Q = 0.01 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 30 # number of years of data to generate

fracmiss = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance (~1100 individuals)

nsim = 9

years = seq(1:nYr) # col of years

params = matrix(NA, nrow=11, ncol=5,

dimnames=list(c(paste("sim",1:9),"mean sim","true"),

c("kem.U","den91.U","kem.Q","kem.R", "den91.Q")))

x.ts = matrix(NA,nrow=nsim,ncol=nYr) # ts w/o measurement error

y.ts = matrix(NA,nrow=nsim,ncol=nYr) # ts w/ measurement error

for(i in 1:nsim){

x.ts[i,1]=init

for(t in 2:nYr){

x.ts[i,t] = x.ts[i,t-1]+sim.u+rnorm(1,mean=0,sd=sqrt(sim.Q))}

for(t in 1:nYr){

y.ts[i,t] = x.ts[i,t]+rnorm(1,mean=0,sd=sqrt(sim.R))}

missYears = sample(years[2:(nYr-1)], floor(fracmiss*nYr),

replace = FALSE)

y.ts[i,missYears]=-99

#Kalman-EM estimates

kem = MARSS(y.ts[i,], silent=TRUE)

params[i,c(1,3,4)] = c(kem$par$U,kem$par$Q,kem$par$R)

#Dennis et al 1991 estimates

den.years = years[y.ts[i,]!=-99] # the non missing years

den.yts = y.ts[i,y.ts[i,]!=-99] # the non missing counts

den.n.yts = length(den.years)

delta.pop = rep(NA, den.n.yts-1 ) # transitions

tau = rep(NA, den.n.yts-1 ) # time step lengths

for (t in 2:den.n.yts ){

delta.pop[t-1] = den.yts[t] - den.yts[t-1] # transitions

tau[t-1] = den.years[t]-den.years[t-1] # time step length

} # end i loop

den91 <- lm(delta.pop ~ -1 + tau) # -1 specifies no intercept

params[i,c(2,5)] = c(den91$coefficients, var(resid(den91)))

}

params[nsim+1,]=apply(params[1:nsim,],2,mean)

params[nsim+2,]=c(sim.u,sim.u,sim.Q,sim.R,sim.Q)
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Here is an example of the output from the code:

print(params,digits=3)

kem.U den91.U kem.Q kem.R den91.Q

sim 1 -0.0648 -0.0959 0.00355 0.0540 0.0976

sim 2 -0.0486 -0.0481 0.00047 0.0374 0.0814

sim 3 0.0106 -0.0241 0.00552 0.0592 0.1175

sim 4 -0.0556 -0.1056 0.03093 0.0349 0.1112

sim 5 -0.0256 -0.0545 0.01313 0.0310 0.0798

sim 6 -0.0449 -0.0418 0.02224 0.0152 0.0518

sim 7 -0.0710 -0.0560 0.01705 0.0264 0.0735

sim 8 -0.0616 -0.0371 0.01111 0.0475 0.1156

sim 9 -0.0522 -0.0503 0.01100 0.0589 0.1595

mean sim -0.0460 -0.0570 0.01278 0.0405 0.0986

true -0.0500 -0.0500 0.01000 0.0500 0.0100

1. Re-run the code a few times to see the performance of the estimates us-
ing a state-space model (kem) versus the model with no observation error
(den91). You can cut and paste the code from the pdf file into an R script
file or on to the R command line.

2. Alter the observation variance, sim.R in the data generation step in order
to get a feel for performance as observations are further corrupted. What
happens as error is increased?

3. Decrease the number of years of data, nYr and re-run the parameter esti-
mation. What changes?

If you find that the exercise code takes too long to run, reduce the number of
simulations (by reducing nsim in the code).

8.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will
hit a certain threshold xd within a certain time frame te – if the observed
trends continue’. Under this definition, we can compute Π(xd, te) using the
stochastic population model (equation 8.1) and our estimate of the param-
eters of that model. In practice, the threshold used is not Ne = 1, which
would be true extinction. Often a ‘functional’ extinction threshold will be
used (Ne >> 1). Other times a threshold of ‘a pd fraction of current levels’



8.4 Probability of hitting a threshold Π(xd, te) 55

is used. The latter is used because we often have imprecise information about
the relationship between the true population size and what we measure in
the field; many population counts are index counts. In these cases, one must
use ‘fractional declines’ as the threshold. Also, extinction estimates that use
an absolute threshold (like 100 individuals) are quite sensitive to error in the
estimate of true population size. Here, we are going to use fractional declines
as the threshold, specifically pd = 0.1 which means a 90% decline below the
population size at the last census.

Π(xd, te) is typically presented as a curve showing the probabilities of
hitting the threshold (y-axis) over different time horizons (te) on the x-axis.
Extinction probabilities can be computed through Monte Carlo simulations
or analytically using equation 16 in Dennis et al. (1991) (note there is a typo
in equation 16; the last + is supposed to be -). We will use the latter method:

Π(xd, te) = π(u)×Φ
(
−xd + |u|te√

σ2te

)
+exp(2xd|u|/σ2)Φ

(
−xd − |u|te√

σ2te

)
(8.3)

where xe is the threshold and is defined as xe = log(N0/Ne), where N0 is the
current population estimate and Ne is the threshold. If we are using fractional
declines then xe = log(N0/(pd × N0)) = −log(pd). π(u) is the probability
that the threshold is eventually hit (by te = ∞). π(u) = 1 if u <= 0 and
π(u) = exp(−2uxd/σ2) if u > 0. Φ() is the cumulative probability distribution
of the standard normal (mean = 0, sd = 1). Here is the R code for that
computation (using a fractional decline threshold):

pd = 0.1 #means a 90 percent decline

tyrs = 1:100

xd = -log(pd)

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q)) #Q=sigma2

for (i in 1:100){

Pi[i] = p.ever * pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

}

Figure 8.4 shows the estimated probabilities of hitting the 90% decline for the
nine 30-year times series simulated with u = −0.05, σ2 = 0.01 and η2 = 0.05.
The dashed line shows the estimates using the Kalman-EM parameter esti-
mates and the solid line shows the estimates using a process-error only model
(the den91 estimates). The circles are the true probabilities. The difference
between the estimates and the true probalities is due to errors in û. Those
errors are due largely to process error – not observation error. As we saw ear-
lier, by chance population trajectories with a u < 0 will increase, even over a
30-year period. In this case, û will be positive when in fact u < 0.

Looking at the figure, it is obvious that the probability estimates are highly
variable. However, look at the first panel. This is the average estimate (over
9 simulations). Note that on average (over 9 simulations), the estimates are
good. If we had averaged over 1000 simulations instead of 9, you would see
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that the Kalman-EM line falls on the true line. It is an unbiased predictor.
While that may seem a small consolation if estimates for individual simulations
are all over the map, it is important for correctly specifying our uncertainty
about our estimates. Second, rather than focusing on how the estimates and
true lines match up, see if there are any forecasts that seem better than others.
For example, are 20-year predictions better than 50 and are 100-yr better or
worse. In Exercise 3, you’ll remake this with different u. You’ll discover from
that that populations in the worst shape (smallest u) have better predictions.
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Fig. 8.4. Plot of the true and estimated probability of declining 90% in different
time horizons for nine simulated population time series with observation error.

Example 8.3 (The effect of parameter values on risk estimates)

In this example, you’ll recreate figure 8.4 using different parameter values.
This will give you a feel for how variability in the data and population pro-
cess affect the risk estimates. You’ll need to run the Example 8.2 code before
running the Example 8.3 code.
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Example 8.3 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

#Needs Exercise 2 to be run first

par(mfrow=c(3,3))

pd = 0.1; xd = -log(pd) # decline threshold

te = 100; tyrs = 1:te # extinction time horizon

for(j in c(10,1:8)){

real.ex = denn.ex = kal.ex = matrix(nrow=te)

#Kalman-EM parameter estimates

u=params[j,1]; Q=params[j,3]

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

kal.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)* tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#Dennis et al 1991 parameter estimates

u=params[j,2]; Q=params[j,5]

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

denn.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#True parameter values

u=sim.u; Q=sim.Q

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

real.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#plot it

plot(tyrs, real.ex, xlab="time steps into future",

ylab="probability of extinction", ylim=c(0,1), bty="l")

if(j<=8) title(paste("simulation ",j) )

if(j==10) title("average over sims")

lines(tyrs,denn.ex,type="l",col="red",lwd=2,lty=1)

lines(tyrs,kal.ex,type="l",col="green",lwd=2,lty=2)

}

legend("bottomright",c("True","Dennis","KalmanEM"),pch=c(1,-1,-1),

col=c(1,2,3),lty=c(-1,1,2),lwd=c(-1,2,2),bty="n")
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1. Change sim.R and rerun the Example 8.2 code. Then run the Example 8.3
code. When are the estimates using the process-error only model (den91)
worse and in what way are they worse?

2. You might imagine that you should always use a model that assumes that
the data contain observation error, since in practice observations are never
perfect. However, there is a cost to estimating that extra variance param-
eter and the cost is a more variable σ2 (Q) estimate. Play with shortening
the time series and decreasing the sim.R values. Are there situations when
the ‘cost’ of the extra parameter is greater than the ‘cost’ of ignoring ob-
servation error?

3. How does changing the extinction threshold (pd) change the extinction
probability curves? (Do not remake the data, i.e. don’t rerun the Example
8.2 code.)

4. How does changing the rate of decline (sim.u) change the estimates of
risk? Rerun the Example 8.2 code using a lower u; this will create a new
matrix of parameter estimates. Then run the Example 8.3 code. Do the
estimates seem better of worse for rapidly declining populations?

5. Rerun the Example 8.2 code using fewer number of years (nYr smaller)
and increase fracmissing. Then run the Example 8.3 code. The graphs
will start to look peculiar. Why do you think it is doing that? Hint: look
at the estimated parameters.

8.5 Certain and uncertain regions

From exercise 3, you’ve observed one of the problems with estimates of the
probability of hitting thresholds. Looking over the 9 simulations, your risk es-
timates will be on the true line sometimes and other times they are way off. So
your estimates are variable. Using only the point estimates of the probability
of 90% decline by themselves in a PVA should not be done. At the minimum,
CIs need to be added (next section), but even with CIs, the probability of
hitting declines often doesn’t capture our certainty and uncertainty about our
risk estimates.

From exercise 3, you might have also noticed that there are some time
horizons (10, 20 years) for which the estimate are highly certain (not hitting
the threshold), while for other time horizons (30, 50 years) the estimates are
all over the map. Put another way, you may be able to say with high confidence
that a 90% decline will NOT occur between years 1 to 20 and that by year 100
it most surely will have occurred. However, between the years 20 and 100, you
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are very uncertain about the risk. The point is that you can be certain about
some forecasts while at the same time being uncertain about other forecasts.

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years)
and forecasted decline (percentage). Uncertainty is defined as how much of
the 0-1 range your 95% CI covers. Ellner and Holmes (2008) show such a
figure (their figure 1). Figure 8.5 shows a version of this figure that you can
produce with the function CSEGtmufigure(u= val, N= val, s2p= val). In
the figure, I used u = −0.05 which is a 5% per year decline, N = 25 so 25
years between the first and last census, and s2p = 0.01. The process variability
for big mammals is typically in the range of 0.002 to 0.02.
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Fig. 8.5. This figure shows your region of high uncertainty (dark grey). In this
region, the minimum 95% CIs (meaning if you had no observation error) span 80%
of the 0 to 1 probability. That is, you are uncertain if the probability of a specified
decline is close to 0 or close to 1. The green (dots) shows where your upper 95% CIs
does not exceed P=0.05. So you are quite sure the probability of a specified decline
is less than 0.05. The red (dots) shows where your lower 95% CIs is above P=.95. So
you are quite sure the probability is greater than P=0.95. The light grey is between
these two certain/uncertain extremes.
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Example 8.4 (Uncertain and certain regions)

Use the Example 8.4 code to re-create Figure 8.5 and get a feel for when
(what parameter ranges) risk estimates are more certain and when they are
less certain.

Exercise 8.4 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

par(mfrow = c(1, 1))

CSEGtmufigure(N = 30, u = -0.05, s2p = 0.01)

N are the number of years of data, u is the mean population growth rate, and
s2p is the process variance.

8.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds
because this is an important and common risk metric used in PVA and it
appears in IUCN Red List criteria. However, as you have seen, there is high
uncertainty associated with such estimates. Part of the problem is that prob-
ability is constrained to 0 to 1, and it is easy to get estimates with CIs that
span 0 to 1. Other metrics of risk, û and the distribution of the time to hit
a threshold (Dennis et al., 1991), don’t have this problem and may be more
informative. Figure 8.6 shows different risk metrics from Dennis et al. (1991)
on a single plot. This figure is generated by the call

dat=read.table(datafile, skip=1)

dat=as.matrix(dat)

CSEGriskfigure(dat)

The datafile is the name of the data file, with column 1 = years and column
2 = population count (logged). CSEGriskfigure() has a number of arguments
that can be passed in to change the default behavior. The variable te is the
forecast length (default is 100 years), threshold is the extinction threshold
either as an absolute number, if absolutethresh=T, or as a fraction of current
population count, if absolutethresh=F. The default is absolutethresh=F
and threshold=0.1. datalogged=TRUE means the data are already logged;
this is the default.

Example 8.5 (Example of risk figures for different species)
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Fig. 8.6. Risk figure using data for the critically endangered African Wild Dog
(data from Ginsberg et al. 1995). This population went extinct after 1992.

Use the Example 8.5 code to re-create Figure 8.6. The package includes other
data for you to run: prairiechicken from the endangered Attwater Prairie
Chicken, graywhales from Gerber et al. (1999), and grouse from the Sharp-
tailed Grouse (a species of U.S. federal concern) in Washington State. Note
for some of these other datasets, the hessian matrix cannot be inverted and
you’ll need to use If you have other textfiles of data, you can run those too.
The commented lines show how to read in data from a tab-delimited text file
with a header line.
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Exercise 5 code
Type show.doc(MARSS, Case_study_1.R) to open a file in R with all the example

code.

#If you have your data in a tab delimited file with a header

#This is how you would read it in using file.choose()

#to call up a directory browser.

#However, the package has the datasets for the exercises

#dat=read.table(file.choose(), skip=1)

#dat=as.matrix(dat)

dat = wilddogs

CSEGriskfigure(dat, CI.method="hessian", silent=TRUE)

8.7 Confidence intervals

The figures produced by CSEGriskfigure() have confidence (95% and 75%)
on the probabilities in the top right panel. The standard way to produce
these CIs is via parametric bootstrapping. Here are the steps in a parametric
bootstrap:

� You estimate u and σ2 and η2

� Then you simulate time series using those estimates and equations 8.1 and
8.2

� Then you re-estimate your parameters from the simulated data (using say
KalmanEM(simdata)

� Repeat for 1000s of time series simulated using your estimated parameters.
This gives you a large set of bootstrapped parameter estimates

� For each bootstrapped parameter set, compute a set of extinction estimates
(you use equation 8.3 and code from exercise 3)

� The α% ranges on those bootstrapped extinction estimates gives you your
α CIs on your probabilities of hitting thresholds

MARSS provides the function MARSSparamCIs() to add bootstrapped con-
fidence intervals to fitted model (type ?MARSSparamCIs to learn about the
function).

Producing parameter estimates by estimating them from the simulated
data would be quite slow. Therefore for the manual, I used approximate CIs
on the parameters using the inverse of a numerically estimated Hessian ma-
trix. This uses an estimate of the variance-covariance matrix of the param-
eters from the inverse of a numerically estimated Hessian matrix. The function
CSEGriskfigure() has an option you can set CI.method = c("hessian", "param-
boot", "nonparamboot", "none") which tells it how to compute the CIs. I
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set CI.method="hessian". Using an estimated Hessian matrix to compute
CIs is a handy trick that can be used for all sorts of maximum-likelihood pa-
rameter estimates. Look at the code in CSEGriskfigure() to see how to use
the nlme package in R to do this easily.

8.8 Comments

Data with cycles, from age-structure or predator-prey interactions, are difficult
to analyze and the Kalman-EM algorithm used in MARSS 1.0 will give poor
estimates for this type of data. The slope method (Holmes, 2001) is robust
to those problems. Holmes et al. (2007) used the slope method in a large
study of data from endangered and threatened species, and Ellner and Holmes
(2008) showed that the slope estimates are close to the theoretical minimum
uncertainty. Especially, when doing a PVA using a time series with fewer
than 25 years of data, the slope method (Holmes, 2001) is often less biased
and (much) less variable because that method is less data-hungry (Holmes,
2004).
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Case study 2: Combining multi-site and
subpopulation data to estimate trends and
trajectories

9.1 The problem

In this case study, we will use multivariate state-space models to combine
surveys from multiple sites into one estimate of the average long term popu-
lation growth rate and the year-to-year variability in that growth rate. Note
this is not quite the same as estimating the ‘trend’; ‘trend’ often means what
population change happened, whereas the long-term population growth rate
refers to the underlying population dynamics. We will use as our example a
dataset from harbor seals in the Puget Sound, Washington, USA.

We have five regions where harbor seals were censused from 1978-1999
while hauled out of land1. During the period of this dataset, harbor seals
were recovering steadily after having been reduced to low levels by hunting
prior to protection. The methodologies were consistent throughout the 20
years of the data but we do not know what fraction of the population that
each region represents nor do we know the observation-error variance for each
region. Given differences between behaviors of animals in different regions and
the numbers of haul-outs in each region, the observation errors may be quite
different. The regions have had different levels of sampling; the best sampled
region has only 4 years missing while the worst has over half the years missing.

Figure 9.1 shows the data. The numbers on each line denote the different
regions:

1 SJF
2 SJI
3 EBays
4 PSnd
5 HC

1 Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-
1999. Journal of Wildlife Management 67(1):208–219
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Fig. 9.1. Plot of the of the count data from the five harbor seal regions (Jeffries et
al. 2003). Each region is an index of the total harbor seal population, but the bias
(the difference between the index and the true population size) for each region is
unknown.

For this case study, we will assume that the underlying population process
is a stochastic exponential growth process with rates of increase that were
not changing through 1978-1999. However, we are not sure if all five regions
sample a single “total Puget Sound” population or if there are independent
subpopulations. You are going to estimate the long-term population growth
rate using different assumptions about the population structures (1 big pop-
ulation versus multiple smaller ones) and observation error structures to see
how your assumptions change your estimates.

The data for this case study are in the MARSS package. The data have
time running down the rows and we need time across the columns for the
MARSS function, so we will transpose the data:

dat = t(harborSealWA)

years = dat[1, ]

n = nrow(dat) - 1

dat = dat[2:nrow(dat), ]
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dat = read.csv("datafile.csv",header=TRUE)

dat = read.table("datafile.csv",header=TRUE)

If you needed to read data in from a comma-delimited or tab-delimited file,
these are the commands to do that:

dat = t(harborSealWA)

years = dat[1, ]

n = nrow(dat) - 1

dat = dat[2:nrow(dat), ]

dat = read.csv("datafile.csv",header=TRUE)

dat = read.table("datafile.csv",header=TRUE)

The years (years) are in row 1 of dat and the logged data are in the rest of
the rows. The number of observation time series (n) is the number of rows in
dat minus 1 (for years row). Let’s look at the first few years of data:

print(harborSealWA[1:8,], digits=3)

Years SJF SJI EBays PSnd HC
[1,] 1978 6.03 6.75 6.63 5.82 6.6
[2,] 1979 -99.00 -99.00 -99.00 -99.00 -99.0
[3,] 1980 -99.00 -99.00 -99.00 -99.00 -99.0
[4,] 1981 -99.00 -99.00 -99.00 -99.00 -99.0
[5,] 1982 -99.00 -99.00 -99.00 -99.00 -99.0
[6,] 1983 6.78 7.43 7.21 -99.00 -99.0
[7,] 1984 6.93 7.74 7.45 -99.00 -99.0
[8,] 1985 7.16 7.53 7.26 6.60 -99.0

The -99’s in the data are missing values. The algorithm will ignore those
values when estimating x1:T .

9.2 Analyze assuming a single total Puget Sound
population

The first step in a state-space modeling analysis is to specify the population
structure and how the regions relate to that structure. The general state-space
model is

xt = Bxt−1 + u + et, where et ∼ MVN(0,Q) (9.1)
yt = Zxt + a + ηt, where ηt ∼ MVN(0,R) (9.2)

where all the bolded symbols are matrices. To specify the structure of the
population and observations, we will specify what those matrices look like.
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9.2.1 A single population process, x

When we are looking at trends over a large geographic region, we might make
the assumption that the different census sites are measuring a single popu-
lation if we think animals are moving sufficiently such that the whole area
(multiple regions together) is ”well-mixed”. We write a model of the popula-
tion abundance as:

nt = exp(u+ et)nt−1, (9.3)

where nt is the total count in year t, u is the mean population growth rate,
and et is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 + u+ et. (9.4)

xt = log nt. When there is one effective population, there is one x, therefore
xt is a 1× 1 matrix. There is one population growth rate (u) and there is one
process variance (σ2). Thus u and Q are 1× 1 matrices.

9.2.2 The observation process, y

For this first analysis, we assume that all five regional time series are observing
this one population trajectory but they are scaled up or down relative to that
trajectory. In effect, we think that animals are moving around a lot and our
regional samples are some fraction of the population. There is year-to-year
variation in the fraction in each region, just by chance. Notice that under this
analysis, we do not think the regions represent independent subpopulations
but rather independent observations of one population.

Our model for the data, yt = Zxt + a + ηt, is written out as:
y1,t
y2,t
y3,t
y4,t
y5,t

 =


1
1
1
1
1

xt +


a1

a2

a3

a4

a5

+


ε1,t
ε2,t
ε3,t
ε4,t
ε5,t

 (9.5)

Each yi is the time series for a different region (the names for the numbered
regions are given on page 2). The a’s are the bias between the regional sample
and the total population. The a’s are scaling (or intercept-like) parameters
that are not important for trend estimation2. We will ignore them 3. We
2 To get rid of the a’s, we scale multiple observation time series against each other;

thus one a will be fixed at 0
3 Estimating the bias between regional indices and the total population is important

for getting an estimate of the total population size. The type of time-series analysis
that we are doing here (trend analysis) is not useful for estimating a’s. Instead
to get a’s one would need some type of mark-recapture data. However, for trend
estimation, the a’s are not important. The regional observation variance captures
increased variance due to a regional estimate being a smaller sample of th total
population.
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allow that each region could have a unique observation variance and that
the observation errors are independent between regions. Lastly, we assume
that the observations errors on log(counts) are normal and thus the errors on
(counts) are log-normal.4

We specify independent observation errors with unique variances by εt ∼
MVN(0,R), where

R =


η1,t 0 0 0 0
0 η2,t 0 0 0
0 0 η3,t 0 0
0 0 0 η4,t 0
0 0 0 0 η5,t

 (9.6)

Z is specifying which observation time series, yi,1:T , is associated with which
population trajectory, xj,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population
trajectories. A 1 in row i column j means that observation time series i is
measuring state process j. Otherwise the value in Zij = 0. Since we have only
1 population trajectory, all the regions must be measuring that one population
trajectory. Thus Z is n× 1.

9.2.3 Set the constraints for MARSS

Now that we have specified our state-space model, we set the arguments that
will tell the function MARSS the structure of our model. We do this by passing
in the argument constraint to MARSS. constraint is a list which specifies
any constraints on Z, u, Q, etc. The function call will now look like:

kem = MARSS(dat, constraint=list(Z=Z.constraint, U=U.constraint,

Q=Q.constraint, R=R.constraint) )

First we set the Z constraint. We need to tell the MARSS function that Z is
a column vector of 1s (as in equation 9.5). We do this by specifying which
data time series belongs to which population using a 1×n vector as an object
of class factor. The i-th element specifies which population trajectory the
i-th observation time series belongs to. Since there is only one population
trajectory in analysis 1, we will have a vector of five 1’s. Every observation
time series is measuring the first, and only, population trajectory. In later
analyses, you’ll see how to specify the constraint on Z when we have multiple
populations.

Z.constraint = factor(c(1,1,1,1,1))

Note, these are the levels corresponding to each of the n time series and thus
must be wrapped in factor() so that MARSS recognizes it. You can use either
numeric or character levels. Next we specify that the R variance-covariance
4 The assumption of normality is not unreasonable since these regional counts are

the sum of counts across multiple haul-outs.
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matrix only has terms on the diagonal (the variances) with the off-diagonal
terms (the covariances) equal to zero.5 constraint.

R.constraint = "diagonal and unequal"

The and unequal part specifies that the variances are allowed to be unique
on the diagonal. If we wanted to force the observation variances to be equal at
all regions, we would use diagonal and equal. For analysis 1, we only need
to set constraints on Z and R. Since there is only one population, there is only
one u and Q (they are scalars), so there are no constraints to set on them.
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Fig. 9.2. Plot of the estimate of “ln total harbor seals in Puget Sound” (minus
the unknown bias for time series 1) against the data. The estimate of the total seal
count has been scaled relative to the first time series. The 95% CIs on the population
estimates are the dashed lines. These are not the CIs on the observations and the
observations (the numbers) should not fall between the CI lines.

5 For the EM function in the MARSS 1.0 package, the measurement errors must
be uncorrelated if there are missing values in the data.
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9.2.4 The MARSS output

The output from MARSS, here assigned the name kem, is a list of objects. To
see all the objects in it:

The following are some of the most used objects. kem1$states are the
maximum-likelihood estimates of “total harbor seal population” scaled to
the first observation data series (Fig. 9.2), and kem1$states.se are the
standard errors on those estimates. To get 95% CIs, use kem1$states +/-
1.96*kem1$states.se. One of the biases, the As, cannot be estimated and
arbitrarily our algorithm choses A1 = 0, so the population estimate is scaled to
the first observation time series. Since we are only trying to estimate the trend,
u, the unknown bias is unimportant. Figure 9.2 shows a plot of kem1$states
with its 95% CIs over the data. Because kem1$states has been scaled relative
to the first time series, it is on top of that time series.

The estimated parameters are a list in kem1: kem1$par. To get the element
U of that list, which is the estimated long term population growth rate, type
in kem1$par$U. Multiply by 100 to get the percent increase per year. The
estimated process variance is given by kem1$par$Q. The log-likelihood of this
model is kem1$logLik. We estimated 1 initial x (t = 0), 1 process variance,
1 u, 4 a’s, and 5 observation variances’s. So K = 12 parameters. The AIC of
this model is −2× loglike+ 2K, which we can show by typing kem1$AIC.

Example 9.1 (Fit the single population model to the harbor seal
data)

Analyze the harbor seal data using a single population model. The code for
Example 9.1 shows you how to input data and send it to the function MARSS.
When you run MARSS, it will print information on the structure of the model
it is fitting and how many iterations it took to run. As you run the examples,
add the estimates to the table at the end of the chapter so you can compare
estimates across the examples.



72 9 Combining multi-site and subpopulation data

Example 9.1 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

#Read in data

dat=t(harborSealWA) #Transpose since MARSS needs time ACROSS columns

years = dat[1,]

n = nrow(dat)-1

dat = dat[2:nrow(dat),]

legendnames = (unlist(dimnames(dat)[1]))

#estimate parameters

Z.constraint = factor(c(1,1,1,1,1))

R.constraint = "diagonal and unequal"

kem1 = MARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

#make figure

matplot(years, t(dat),xlab="",ylab="index of log abundance",

pch=c("1","2","3","4","5"),ylim=c(5,9),bty="L")

lines(years,kem1$states-1.96*kem1$states.se,type="l",

lwd=1,lty=2,col="red")

lines(years,kem1$states+1.96*kem1$states.se,type="l",

lwd=1,lty=2,col="red")

lines(years,kem1$states,type="l",lwd=2)

title("Observations and total population estimate",cex.main=.9)

#show params

kem1$par

kem1$logLik

kem1$AIC

9.3 Changing the assumption about the observation
variances

The variable kem1$par$R contains the estimates of the observation error vari-
ances. It is a matrix. Here is R from Example 9.1:

print(kem1$par$R, digits=3)

SJF:1 SJI:2 EBays:3 PSnd:4 HC:5
SJF:1 0.0325 0.0000 0.0000 0.0000 0.000
SJI:2 0.0000 0.0355 0.0000 0.0000 0.000
EBays:3 0.0000 0.0000 0.0131 0.0000 0.000
PSnd:4 0.0000 0.0000 0.0000 0.0113 0.000
HC:5 0.0000 0.0000 0.0000 0.0000 0.195
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Notice that the variances along the diagonal are all different–we estimated 5
unique observation variances. We might be able to improve the fit (relative
to the number of estimated parameters) by assuming that the observation
variance is equal across regions but the errors are independent. This means
we estimate 1 observation variance instead of 5. This is a fairly standard
assumption for data that come from the same survey methodology6.

To impose this constraint, we set the R constraint to

R.constraint="diagonal and equal"

This tells MARSS that all the η2’s along the diagonal in R are the same. To fit
this model to the data, call MARSS as:

Z.constraint = factor(c(1,1,1,1,1))

R.constraint = "diagonal and equal"

kem2 = MARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

We estimated 1 initial x, 1 process variance, 1 U , 4 A’s, and 1 observation
variance. So K = 8 parameters. The AIC for this new model compared to the
old model with 5 observation variances is:

c(kem1$AIC,kem2$AIC)

[1] -10.231173 8.384659

A smaller AIC means a better model. The difference between the one observa-
tion variance versus the unique observation variances is >10, suggesting that
the unique observation variances model is better. Go ahead and type in the
R code. Then add the parameter estimates to the table at the back.

One of the key diagnostics when you are comparing fits from multiple
models, it to examine whether the model is flexible enough to fit the data.
You do this by looking for temporal trends in the the residuals between the
estimated population states (e.g. kem2$states) and the data. In Fig. 9.3, the
residuals for analysis 2 are shown. Ideally, these residuals should not have a
temporal trend. They should look cloud-like. The fact that the residuals for
analysis 2 have a strong temporal trend is an indication that our 1 population
model is too restrictive for the data7.

Example 9.2 (Fit a model with shared observation variances)

6 This is not a good assumption for these data since the number haul-outs in each
region varies and the regional counts are the sums across all haul-outs in a region.
We will see that this is a poor assumption when we look at the AIC values.

7 When comparing models via AIC, it is important that you only compare models
that are flexible enough to fit the data. Fortunately, inadequate models will usually
have very high AICs and fall out of the mix.
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Fig. 9.3. Residuals for the model with a single population. The plots of the residuals
should not have trends with time, but they do... This is an indication that the single
population model is inconsistent with the data. The code to make this plot is given
in the script file for case study 2.

Analyze the data using the same population model as in example 1, but con-
strain the R matrix so that all sites have the same observation variance. The
Example 9.2 code shows you how to do this. It also shows you how to make
the diagnostics figure (Figure 9.3).
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Example 9.2 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

#fit model

Z.constraint = factor(c(1,1,1,1,1))

R.constraint = "diagonal and equal"

kem2 = MARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

#show parameters

kem2$par$U #population growth rate

kem2$par$Q #process variance

kem2$par$R[1,1] #observation variance

kem2$logLik #log likelihood

c(kem1$AIC,kem2$AIC)

#plot residuals

plotdat = t(dat); plotdat[plotdat == -99] = NA;

matrix.of.biases = matrix(kem2$par$A,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

xs = matrix(kem2$states,

nrow=dim(plotdat)[1],ncol=dim(plotdat)[2],byrow=F)

resids = plotdat-matrix.of.biases-xs

par(mfrow=c(2,3))

for(i in 1:n){

plot(resids[!is.na(resids[,i]),i],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

9.4 Analyze the data assuming North and South
subpopulations

For the third analysis, we will change our assumption about the structure
of the population. We will assume that there are 2 subpopulations, North
and South, and that regions 1 and 2 (Strait of Juan de Fuca and San Juan
Islands) fall in the north subpopulation and regions 3, 4 and 5 fall in the south
subpopulation. For this analysis, we will assume that these two subpopulations
share their growth parameter, u, and process variance, σ2, since they share
a similar environment and prey base. However we postulate that because of
fidelity to natal rookeries for breeding, animals do not move much year-to-year
between the north and south and the two subpopulations are independent.
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We need to write the state-space model to reflect this population structure.
There are two subpopulations, xn and xs, and they have the same growth rate
u: [

xn,t
xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
u
u

]
+
[
en,t
es,t

]
(9.7)

We specify that they are independent by specifying that their year-to-year
population fluctuations (their process error) come from a multivariate normal
with no covariance:[

en,t
es,t

]
∼MVN

(
mean =

[
0
0

]
, varcov =

[
σ2 0
0 σ2

])
(9.8)

For the observation process, we use a matrix to associate the regions with
their respective xn and xs values:

y1,t
y2,t
y3,t
y4,t
y5,t

 =


A1

A2

A3

A4

A5

+


1 0
1 0
0 1
0 1
0 1


[
xn,t
xs,t

]
+


ε1,t
ε2,t
ε3,t
ε4,t
ε5,t

 (9.9)

9.4.1 Specifying the MARSS arguments

We need to change the Z constraint to specify that there are 2 subpopulations
(north and south), and that regions 1 and 2 are in the north subpopulation
and regions 3,4 and 5 are in the south subpopulation:

Z.constraint = factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

We want to specify that the u’s are the same for each subpopulation and that
Q is diagonal with equal σ2’s. To do this, we set

Z.constraint = factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

This says that there is one u and one σ2 parameter and both subpopulations
share it (if we wanted the u’s to be different, we would use U.constraint="unequal"
or leave off the u constraint since the default behavior is U.constraint="unequal").

Now we fit this model to the data and pass in the new constraints:

Z.constraint = factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

R.constraint = "diagonal and equal"

kem3 = MARSS(dat, constraint=list(Z=Z.constraint,

R=R.constraint, U=U.constraint, Q=Q.constraint))
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abstol reached in 25 iterations and parameters appear converged.
Alert: with less than 100 iterations, the convergence diagnostics will be uncertain.

MARSS fit is
Estimation method: kem
Estimation converged in 25 iterations.
Log-likelihood: 12.22753
AIC: -8.455068 AICc: -6.132488

Estimate
A.2 0.79875
A.4 -0.77149
A.5 -0.83642
Q.1 0.00878
R.1 0.02950
U.1 0.05025
x0.1 6.10811
x0.2 6.90050

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

The output tells us the structure of the model that was fit to the data and how
long it took to fit the model. We estimated two initial x’s, 1 process variance,
one u, three a’s, and one observation variance. So K = 8 parameters. The
Kalman filter requires an initial condition (t = 0) for each x time series.
When m < n, the number of a’s estimated is n −m since one of the a’s for
each state process will be set to 0. The AIC is 2*8 - 2*kem3$logLik. Fig. 9.4
shows the residuals for the 2 subpopulations case. The residuals look better
(more cloud-like) but the Hood Canal residuals are still temporally correlated.

Example 9.3 (Use MARSS to fit a model with North and South sub-
populations)
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Fig. 9.4. The residuals for the analysis with a North and South subpopulation. The
plots of the residuals should not have trends with time. Compare with the residuals
for the analysis with one subpopulation.

Example 9.3 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

#fit model

Z.constraint = factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

R.constraint = "diagonal and equal"

kem3 = MARSS(dat, constraint=list(Z=Z.constraint,

R=R.constraint, U=U.constraint, Q=Q.constraint))

#plot residuals

plotdat = t(dat); plotdat[plotdat == -99] = NA;

matrix.of.biases = matrix(kem3$par$A,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

par(mfrow=c(2,3))

for(i in 1:n){

j=c(1,1,2,2,2)

xs = kem3$states[j[i],]

resids = plotdat[,i]-matrix.of.biases[,i]-xs

plot(resids[!is.na(resids)],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))
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9.5 Using MARSS to fit other population and observation
error structures

Now work through a number of different structures and fill out the table at
the back of this worksheet. At the end you will see how your estimation of
the mean population growth rate varies under different assumptions about
the population and the data. All these analyses assume that the observation
variances are unique at each site.

Example 9.4 (Five subpopulations)

Analyze the data using a model with five subpopulations, where each site is
sampling one of the subpopulations. Assume that the subpopulation are inde-
pendent (diagonal Q), however let each subpopulation share the same popu-
lation parameters, u and σ2. The Example 9.4 code shows how to set the MARSS

arguments for this case. You can change R.constraint="diagonal and equal"
to make all the observation variances equal.

Example 9.4 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

Z.constraint=factor(c(1,2,3,4,5))

U.constraint="equal"

Q.constraint="diagonal and equal"

R.constraint="diagonal and unequal"

kem=MARSS(dat, constraint=list(Z=Z.constraint,

U=U.constraint, Q=Q.constraint, R=R.constraint) )

Example 9.5 (Two subpopulations but different divisions)

Analyze the data using a model that assumes that the Strait of Juan de Fuca
and San Juan Islands sites represent a Northern Puget Sound subpopulation,
while the other three sites represent a Southern Puget Sound subpopulation.
This time assume that each population trajectory (north and south) has dif-
ferent population parameters, u and σ2 and that each of the five sampling
sites has a different observation variance. Try to write your own code for
Examples 5-7. If you get stuck (or want to check your work, you can open
a script file with all the Case Study 2 examples by typing show.doc(MARSS,

Case_study_2.R) at the R command line.
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Example 9.6 (Hood Canal treated separately but covaries with oth-
ers)

Analyze the data using a model with two subpopulations with the divisions
being Hood Canal versus everywhere else. Set

Q.constraint = "equalvarcov"

to make all the subpopulations covary in time but with equal covariances and
variances.

Example 9.7 (Three subpopulations with shared parameter values)

Analyze the data using a model with three subpopulations as follows: North
(sites 1 and 2), South (sites 3 and 4), Hood Canal (site 5). You can specify
that some subpopulations share parameters while others do not. You do this
by using a vector of factors for the constraints:

Q.constraint=factor(c("coastal","interior","interior"))

U.constraint=factor(c("puget sound","puget sound","hood canal"))

R.constraint=factor(c("boat","boat","plane","plane","plane"))

When Q.constraint and U.constraint are vectors (passed in as a factor),
as above, they specify which x’s share parameter values. The factors must be a
vector of length m, where m is the number of x’s. The i-th factor corresponds
to the i-th x. In the example above, we specified that x1 has its own process
variance q (which we named “coastal”) and x2 and x3 share a process variance
value (which we named “interior”). For the long-term trends, we specified that
x1 and x2 share a long-term trend (“puget sound”) while x3 is allowed to have
a separate trend (“hood canal”).

When R.constraint is vector of factors, it specifies which y’s have the same
observation variance. We need a 1× 5 vector here because we need to specify
a value for each observation time series (there are 5). Here we imagine that
observation time series 1 and 2 are boat surveys while the others are plane
surveys and we want to allow the variances to differ based on methodology.
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9.6 Discussion

Case Study 2 shows you how to combine multiple datasets that are measuring
the same underlying process and fit those data using a multivariate state-space
framework. This allows you to combine data sets and use all the available data.
You can also combine data that are discontinuous; that is data that do not
overlap in time. For example, if you have data from one type of monitoring
program in one set of years and then data from a different program starting
in some later years, you can still easily estimate the population dynamics
parameters using both sets of data.

There are a number of corners that we cut in order to have case study
code that runs quickly:

� We ran the code starting from one initial condition. For a real analysis,
you should start from a large number of random initial conditions and
use the one that gives the highest likelihood. Since the EM algorithm
is a “hill-climbing” algorithm, this ensures that it does not get stuck on
a local maxima. MARSS will do this for you if you pass it the argument
control=list(MCInit=TRUE). This will use a Monte Carlo routine to try
many different initial conditions. See the help file on MARSS for more in-
formation (by typing ?MARSS at the R prompt).

� We assume independent observation and process errors. Depending on your
system, observation errors may is driven by large-scale environmental fac-
tors (temperature, tides, prey locations) that would cause your observation
errors to covary across regions. If your observation errors strongly covary
between regions and you treat them as independent, this could be bad for
your analysis. The current EM code will not handle covariance in R when
there are missing data, but even it did, separating covariance across obser-
vation versus process errors will require much data (to have any power).
In practice, the first step is to think hard about what drives sightability
for your species and what are the relative levels of process and observation
variance. You may be able to change your data in a way that will make
the observation errors independent–for example, using data from different
months or defining your “regions”

� The MARSS argument control specifies the options for the EM algorithm.
We left the default tolerance, abstol=0.01. You would want to set this
lower, e.g. abstol=0.0001, for a real analysis. You will need to up the
maxit argument correspondingly.

� We used the large-sample approximation for AIC instead of a bootstrap
AIC that is designed to correct for small sample size in state-space mod-
els. The bootstrap metric, AICb, takes a long time to run (use the call
MARSSaic(kem, output=c("AICbp")) to compute AICb. We could have
shown AICc, which is the small-sample size corrector for non-state-space
models. Type kem$AICc to get that.
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Finally, in a real (maximum-likelihood) analysis, one needs to be careful
not to dredge the data. The temptation is to look at the data and pick a
population structure that will fit that data. This can lead to including models
in your analysis that have no biological basis. In practice, we spend a lot of
time discussing the population structure with biologists working on the species
and review all the biological data that might tell us what are reasonable
structures. From that, a set of model structures to use are selected. Other
times, a particular model structure needs to be used because the population
structure is not in question rather it is a matter of using that pre-specified
structure and using all the data to get parameter estimates for forecasting
(u, Q, R). Finally, other times, one wants to have a measure of the support
that the observed data give to all possible different population structures.
That is a Bayesian question (P (Θ|data)) and we would fit a model where Q
is unconstrained and look at the posterior distribution of the elements in Q.
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Results table

pop. growth process K log-like
Ex. rate variance kem$ kem$num. AIC

kem$par$U kem$par$Q params logLik kem$AIC
1 one population

different obs. vars
uncorrelated

2 one population
identical obs vars

uncorrelated
3 N+S subpops

identical obs vars
uncorrelated;

4 5 subpops
unique obs vars

u’s + σ2’s identical
5 N+S subpops

unique obs vars
u’s + σ2’s identical

6 PS + HC subpops
unique obs vars
u’s + σ2’s unique

7 N + S + HC subpops
unique obs vars
u’s + σ2’s unique

For AIC, only the relative differences matter. A difference of 10 between
two AIC means substantially more support for the model with lower AIC. A
difference of 30 or 40 between two AICs is very large.

Questions

1. Do different assumptions about whether the measurement error vari-
ances are all identical versus different affect your estimate of the trend?
You may want to rerun cases 3-7 with the R.constraint changed.
R.constraint="diagonal and unequal" means measurement variances
all different versus "diagonal and equal".

2. Do assumptions about the underlying structure of the population affect
your estimates of trend? Structure here means number of subpopulations
and which areas are in which subpopulation. Try changing ‘state param-
eters differ’ to ‘state params identical’ for examples 5-7.
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3. The CIs for the first two analyses are very tight because the estimate
process variance was very small, kem1$par$Q. Why do you think σ2 was
forced to be so small? [Hint: We are forcing there to be one and only one
true process and all the observation time series have to fit that one time
series. Look at the AICs too.]



10

Case Study 3: Using MARSS models to
identify spatial population structure and
covariance

10.1 The problem

In this case study, we use time series of observations from 9 sites along the
west coast to examine large-scale spatial structure in harbor seals (Jeffries
et al., 2003). Harbor seals are distributed along the west coast of the US from
California to Washington. The populations in Oregon and Washington have
been surveyed for > 25 years at a number of haul-out sites (Figure 10.1).
In general, these populations have been increasing steadily since the 1972
(Marine Mammal Protection Act). It remains unknown whether they are at
carrying capacity.

For management purposes, 2 stocks are recognized; the coastal stock con-
sists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic Penin-
sula), and the inland WA stock consists of the remaining 5 sites (Figure 10.1).
Subtle differences exist in the demographics across sites (e.g. pupping dates),
however mtDNA analyses and tagging studies have suggested that these sites
may be structured on a much larger scale. Harbor seals are known for strong
site fidelity, but at the same time travel large distances to forage.

Our goal for this case study is to address the following questions about
spatial structure: 1) Does population abundance data support the existing
management boundaries, or are there alternative groupings that receive more
support? and 2) Does the Hood Canal site represent a distinct subpopulation?
Type show.doc(MARSS, Case_study_3.R) to open a file in R with all R code
to get you started on the analyses in this chapter.

10.2 Analysis for question 1: how many distinct
subpopulations?

For this analysis, we will analyze the support for five hypotheses about the
population structure. These do not represent all possible structures but in-
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Figure 01.  Map of spatial distribution of 9 harbor seal sites in Washington and Oregon.   
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Fig. 10.1. Map of spatial distribution of 9 harbor seal sites in Washington and
Oregon.

stead represent those that are considered most biologically plausible given the
geography and the behavior of harbor seals.

Hypothesis 1 Sites are grouped by stock (m = 2), unique process variances
Hypothesis 2 Sites are grouped by stock (m = 2), same process variance
Hypothesis 3 Sites are grouped by state (m = 2), unique process variances
Hypothesis 4 Sites are grouped by state (m = 2), same process variance
Hypothesis 5 All sites are part of the same panmictic population (m = 1)

Aerial survey methodology has been relatively constant across time and
space, and we will assume that all sites have the same constant (and indepen-
dent) observation error variance for all sites.
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10.2.1 Specify the design, Z, matrices

Write down the Z matrices for the hypotheses. Hint: Hypothesis 1 and 2
have the same Z matrix, Hypothesis 3 and 4 have the same Z matrix and
Hypothesis 5 is a column of 1s.

H 1 and 2 H 3 and 4 H 5
Z Z Z

subpop subpop subpop subpop subpop
1 2 1 2 1

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast













Next you need to specify the constraints argument so that MARSS knows
the structure of your Z’s. The Z constraint will be a vector of factors, i.e. it
will have the form factor(c(....)).

� Hypothesis 1 and 2: Z.constraint=
� Hypothesis 3 and 4: Z.constraint=
� Hypothesis 5: Z.constraint=

10.2.2 Specify the grouping arguments

For this case study, we will assume that subpopulations share the same growth
rate. What should U.constraint be for each hypothesis? To specify shared u
parameters (for xi), U.constraint is set as a length m vector of factors and
specifies which subpopulations share their u parameter. Written in R it takes
the form factor(c(#,#,...))

� Hypothesis 1-4: U.constraint=
� Hypothesis 5: U.constraint=

What about Q.constraint? To specify a diagonal Q matrix with shared
values along the diagonal, Q.constraint is set as a length m vector of factors.
The vector specifies which xi’s share their process variance parameter. Look
at each hypothesis (above) and write down the corresponding Q.constraint.

� Hypothesis 1: Q.constraint=
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� Hypothesis 2: Q.constraint=
� Hypothesis 3: Q.constraint=
� Hypothesis 4: Q.constraint=
� Hypothesis 5: Q.constraint=

Lastly, specify R.constraint. As we mentioned above, we will assume that
the observation errors are independent and the observation variance is the
same across sites. You can specify this constraint either as a text string or as
a n length vector of factors.

� Hypothesis 1-5: R.constraint=

10.2.3 Fit models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.r for the code to load the data). Each call to MARSS will look
like kem = MARSS(sealData, constraint=list(Z = Z.constraint, Q = Q.constraint,

R = R.constraint, U = U.constraint)) Fill in the following table, by fit-

ting the five state-space models – that you have defined for the five hypotheses
– to the harbor seal data (using MARSS). Use the Case_Study_3.r script so
you do not have to type in all the commands.

pop. growth process obs. K log-
H rate variance variance kem$num. like. AIC

kem$par$U kem$par$Q kem$par$R params kem$logLik kem$AIC

1

2

3

4

5
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10.2.4 Interpret results for question 1

What do these results indicate about the process error grouping, and spatial
grouping? A lower AIC means a more parsimonious model (highest likelihood
given the number of parameters). A difference of 10 between AICs is large, and
means the model with the higher AIC is unsupported relative to the model
with lower AIC.

Extra analysis (if you have time): Do your results change if you assume
that observation errors are independent but have unique variances? The 9
sites have different numbers of haul-outs and so the observation variances
might be different. Repeat the analysis with unique observation variances for
each site (this means changing R.constraint). You can also try the analysis
with temporally co-varying subpopulations (good and bad years correlated) by
setting Q.constraint="unconstrained" or Q.constraint="equalvarcov".

10.3 Analysis for question 2: Is Hood Canal separate?

The Hood Canal site may represent a distinct population, and has recently
been subjected to a number of catastrophic events (hypoxic events, possibly
leading to reduced prey availability, and several killer whale predation events,
removing up to 50% of animals per occurrence). Build four models, assuming
that each site (other than Hood Canal) is assigned to its current management
stock, but Hood Canal is allowed to be a different subpopulation (m = 3).
Again, assume observation error is independent and constant across sites.

Hypothesis 1 Subpopulations have the same process variance and growth rate
Hypothesis 2 Each subpopulation has a unique process variance and growth

rate
Hypothesis 3 Hood Canal has the same process variance, but different growth

rate
Hypothesis 4 Hood Canal has unique process variance and unique growth rate

10.3.1 Specify the Z matrix and Z.constraint

The Z matrix for each hypothesis is the same. The coastal subpopulation
consists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), the Hood Canal subpopulation is the Hood Canal site, and the
inland WA subpopulation consists of the remaining 4 sites. Thus m = 3 and
Z is a 9× 3 matrix:
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subpop subpop subpop
1 2 3

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast





Then write down Z.constraint for this Z.

10.3.2 Specify which parameters are shared across which
subpopulations

U.groups specifies which u are shared across subpopulations. Look at the
hypothesis descriptions above which will specify whether subpopulations share
their population growth rate or have unique population growth rates.

� Hypothesis 1: U.constraint=
� Hypothesis 2: U.constraint=
� Hypothesis 3: U.constraint=
� Hypothesis 4: U.constraint=

U.constraint will be a length m vector of factors. Once you have more than 2
subpopulations, it can get hard to keep straight which U.constraint= number
goes to which subpopulation. It is best to sketch your Z matrix (which tells you
which site in the rows corresponds to which subpopulation in the columns).
Then remember that the elements of U.constraint correspond one-to-one
with the columns of Z:

U.constraint=factor(c(col 1 Z, col 2 Z, col 3 Z, ..)).
Specify Q.groups showing which subpopulations share their process vari-

ance parameter.

� Hypothesis 1: Q.constraint=
� Hypothesis 2: Q.constraint=
� Hypothesis 3: Q.constraint=
� Hypothesis 4: Q.constraint=

Q.constraint will be a length m vector of factors. R.constraint is the same
as for Question 1; the observation variances are the same for each site.
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10.3.3 Fit the models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.r for the code to load the data). Each call to MARSS will look
like

kem = MARSS(sealData, constraint=list(Z = Z.constraint, Q = Q.constraint,
R = R.constraint, U = U.constraint))

pop. growth K log-like
H rate proc. variance obs. variance kem$num. kem$ AIC

kem$par$U kem$par$Q kem$par$R params logLik kem$AIC

1

2

3

4

10.3.4 Interpret results for question 2

How do the residuals for the Hood Canal site compare from these models
relative to the best model from Question 1? Hint: If you have the vector of
estimated population states (Xpred = t(kem$states)) and the data (Xobs =
sealData), the residuals for site i can be plotted in R as:

Xpred = t(kem$states)

Xobs = sealData

plot(Xpred[, Z.constraint[i]] - Xobs[,i],

ylab="Predicted-Observed Data")

In R, if you have a matrix Y[1:numYrs, 1:n], you can extract column j by
writing Yj = Y[,j].

Relative to the previous models from Question 1, do these scenarios have
better or worse AIC scores (smaller AIC is better)? If you were to provide
advice to managers, would you recommend that the Hood Canal population is
a source or sink? What implications does this have for population persistence?
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Code for Case Study 3
Type show.doc(MARSS, Case_study_3.R) to open a file in R with all the
example code.
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Case Study 5: Using state-space models to
analyze noisy animal tracking data

11.1 A simple random walk model of animal movement

A simple random walk model of movement with drift but no correlation is

x1,t = x1,t−1 + u1 + e1,t, e1,t ∼ N(0, σ2
1) (11.1)

x2,t = x2,t−1 + u2 + e2,t, e2,t ∼ N(0, σ2
2) (11.2)

where x1,t is the location at time t along one axis (in our case study, longitude)
and x2,t is for another, generally orthogonal, axis (in our case study, latitude).
We add errors to our observations of location:

y1,t = x1,t + a1 + ε1,t, ε1,t ∼ N(0, η2
1) (11.3)

y2,t = x2,t + a2 + ε2,t, ε2,t ∼ N(0, η2
2), (11.4)

Together Equations 11.2 and 11.4 describe a MARSS model (now written
in matrix form):

xt = xt−1 + u + et, et ∼ MVN(0,Q) (11.5)
yt = xt + a + ηt, ηt ∼ MVN(0,R). (11.6)

11.2 The problem

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the
United States Endangered Species Act of 1973. Over the last ten years, a
number of state and local agencies have been deploying ARGOS tags on log-
gerhead turtles on the east coast of the United States. We have data on eight
individuals over that period. In this case study, we use some turtle data from
the WhaleNet Archive of STOP Data, however we have corrupted this data
severely by adding random errors in order to create a “Bad Tag” problem. We
corrupted latitude and longitude data by errors (Figure 11.1) and it would
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appear that our sea turtles are becoming land turtles (at least part of the
time).

For this case study, we will use MARSS to estimate true positions and speeds
from the corrupted data. We will use a mapping package to plot the results:
the maps package. If you have not already, install this package by select-
ing the ‘Packages’ menu and then ‘Install packages’ and then select maps. If
you are on a Mac, remember to select “binaries” for the package type. Type
show.doc(MARSS, Case_study_5.R) to open a file in R with all R code to
get you started on the analyses in this chapter.
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Fig. 11.1. Plot of the tag data from the turtle Big Mama. Errors in the location
data make it seem that Big Mama has been moving overland.
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11.3 Using the Kalman-EM algorithm to estimate
locations from bad tag data

11.3.1 Read in the data and load maps package

Our noisy data are in loggerheadNoisy. They consist of daily readings of
location (longitude/latitude). The data are recorded daily and MARSS requires
an data entry for each day. If data are missing for a day, then the entries for
lat and lon for that day should be -99. However, to make this case study run
quickly, we have interpolated all missing values in the original, uncorrupted,
dataset (loggerhead). The corrupted data look like so

loggerheadNoisy[1:6,]

turtle month day year lon lat
1 BigMama 5 28 2001 -81.45989 31.70337
2 BigMama 5 29 2001 -80.88292 32.18865
3 BigMama 5 30 2001 -81.27393 31.67568
4 BigMama 5 31 2001 -81.59317 31.83092
5 BigMama 6 1 2001 -81.35969 32.12685
6 BigMama 6 2 2001 -81.15644 31.89568

and the file has data for 8 turtles:

levels(loggerheadNoisy$turtle)

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"
[6] "MaryLee" "TBA" "Yoto"

We will first analyze the position data for “Big Mama”. We put the data for
“Big Mama” into variable dat. dat is transposed because we need time across
the columns.

turtlename="BigMama"

dat = loggerheadNoisy[which(loggerheadNoisy$turtle==turtlename),5:6]

dat = t(dat) #transpose

11.3.2 Use MARSS to estimate the position of Big Mama

We will begin by specifying the structure of the MARSS model and then
use MARSS to fit that model to the data for each individual. There are two
state processes (one for latitude and the other for longitude). There is one
observation time series for each so

Z.constraint=factor(c(1,2))

We will assume that the errors are independent and that there are different
drift rates (u), process variances (Q) and measurement variances for latitude
and longitude (R). You can try model constraints if you wish.
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U.constraint="unequal"

Q.constraint="diagonal and unequal"

R.constraint="diagonal and unequal"

Fit the model to the data:

kem = MARSS(dat, constraint=list(Z = Z.constraint,

Q = Q.constraint, R = R.constraint, U = U.constraint))

11.3.3 Compare state estimates to the real positions

The real locations (from which loggerheadNoisy was produced by adding
noise) are in loggerhead. In Figure 11.2, we compare the tracks estimated
from the noisy data with the original, good, data (see the R script, Case_Study_5.r
for the code to make this plot. There are only a few data points for the real
data because the real tag data has many missing days.
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Fig. 11.2. Plot of the estimated track of the turtle Big Mama versus the good
location data (before we corrupted it with noise).
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11.3.4 Estimate speeds for each turtle

Turtle biologists designated one of these loggerheads“Big Mama,”presumably
for her size and speed. For each of the eight turtles, estimate the average miles
traveled per day. To calculate the distance traveled by a turtle each day, you
use the estimate (from MARSS) of the lat/lon location of turtle at day t and
at day t − 1. To calculate distance traveled in miles from lat/lon start and
finish locations, we will use the function GCDF defined at the beginning of the
R script, Case_Study_5.r):

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],

pred.lat[i-1],pred.lat[i])

pred.lon and pred.lat are the predicted longitudes and latitudes from
MARSS. To calculate the distances for all days, we put this through a for
loop:

distance = array(-99, dim=c(dim(dat)[2]-1,1))

for(i in 2:dim(dat)[2])

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],pred.lat[i-1],pred.lat[i])

The command (mean(distance) gives us the average distance per day.
We can also make a histogram of the distances traveled per day (Figure 11.3).
Repeat the analysis done for “Big Mama” for each of the other turtles and fill

out the speed table (Table 11.3.4). If you were given the opportunity to race
these turtles, would you bet on Big Mama being the fastest?

Turtle Estimated Speed

Big Mama

Bruiser

Humpty

Isabelle

Johanna

Mary Lee

TBA

Yoto
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Fig. 11.3. Histogram of the miles traveled per day for Big Mama. Compare this
to the estimate of miles traveled per day if you had not accounted for measurement
errors. See the script file, Case_Study_5.r, for the code to this.

11.4 Comparing turtle tracks to proposed fishing areas

One of the greatest threats to the long term viability of loggerhead turtles is
incidental take by net/pot fisheries. Add two proposed fishing areas to your
turtle plots:

# the proposed fishery areas

lines(c(-77,-78,-78,-77,-77),

c(33.5,33.5,32.5,32.5,33.5),col="red",lwd=2)

lines(c(-75,-76,-76,-75,-75),

c(38,38,37,37,38),col="red",lwd=2)

Given that only one area can be chosen as a future fishery, what do your
predicted movement trajectories for our eight turtles tell you?
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11.5 Using fields to get density plots of locations

If you are comfortable programming in R, load the fields package. Make 3D
density plots of predicted sea turtle locations. Which two areas appear to be
most visited?

Include the confidence interval estimates for each location in this analysis.
For this part of the exercise, we will assume that the confidence intervals
are roughly the same as the probability intervals (Bayesian). We can assume
that the error in latitude is independent from error in longitude. The fields
package includes a couple different functions. One that might be useful here
is Tps(), like in the example (?fields). To call fields, we need predictor
variables (x), which can be random lon/lat pairs randomly drawn within the
range of the data. The other requirement for Tps() is the response, y. If we
think of each predicted state being a bivariate normal density, the response
for each of our random pairs can be the density across all of the predicted
states. There is code to help you get started in the R file, Case_Study_5.r.

11.6 Using specialized packages to analyze tag data

If you have real tag data to analyze, you should use a state-space modeling
package that is customized for fitting MARSS models to that kind of data.
The MARSS package does not have all the bells and whistles that you would
want for analyzing tracking data, particularly tracking data in the marine
environment. These are a couple R packages that we have come across for
this purpose:

UKFSST http://www.soest.hawaii.edu/tag-data/tracking/ukfsst/
KFTRACK http://www.soest.hawaii.edu/tag-data/tracking/kftrack/

kftrack is a full-featured toolbox for analyzing tag data with extended
Kalman filtering. It incorporates a number of extensions that are important
for analyzing track data: barriers to movement such as coastlines and non-
Gaussian movement distributions. With kftrack, you can use the real tag
data which has big gaps, i.e. days with no location. MARSS will struggle with
these data because it will estimate states for all the unseen days; kftrack
only fits to the seen days.

To use kftrack to fit the turtle data, type

library(kftrack) # must be installed from a local zip file

loggerhead = loggerhead

# Run kftrack with the first turtle (BigMama)

turtlename = "BigMama"

model = kftrack(loggerhead[ which(loggerhead$turtle == turtlename), 2:6],

fix.first=F, fix.last=F, var.struct="uniform")

To look at what the kftrack model consists of, type
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model

Code for Case Study 5
Type show.doc(MARSS, Case_study_5.R) to open a file in R with the exam-
ple code.
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Textbooks and articles that use MARSS
modeling for population modeling
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Non-process Variance

There are many textbooks on Kalman filtering and estimation of state-space
models. The following are a sample of books that are probably more accessible
for those interested in population modeling.
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Bayesian papers

This is a sample of the papers from the population modeling and animal
tracking literature.
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Package MARSS: Object structures

B.1 Model objects: class ‘marssm’

Objects of class ‘marssm’ specify Multivariate Autoregressive State Space
(MARSS) models. The model component of an ML estimation object (class
‘marssMLE’; see below) is an ‘marssm’ object. These objects have the follow-
ing components:

data An optional matrix (not dataframe), in which each row is a time series
(time across columns).

fixed A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which
elements of each parameter are fixed.

free A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements
of each parameter are to be estimated.

M An array of dim n x n x t (an n x n missing values matrix for each time
point). Each matrix is diagonal with 0 at the i,i value if the i-th value of
y is missing, and 1 otherwise.

miss.value Specifies missing value representation in the data.

The matrices in fixed and free work as pairs to specify the fixed and free
elements for each parameter. See Chapter 3. The dimensions for fixed and
free matrices are as follows, where n is the number of observation time series
and m is the number of state processes:

Z n x m
B m x m
U m x 1
Q m x m
A n x 1
R n x n
x0 m x 1
V0 m x m
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Use is.marssm() to check whether an ‘marssm’ object is correctly speci-
fied. TheMARSS package includes an as.marssm() method for objects of class
‘popWrap’ (see next section).

B.2 Wrapper objects: class ‘popWrap’

Wrapper objects of class ‘popWrap’ contain specifications and options for esti-
mation of a MARSS model. A ‘popWrap’ object has the following components:

data A matrix (not dataframe) of observations (rows) × time (columns).
m Number of hidden state processes (number of rows in x).
constraint Either a list with 8 string elements Z, A, R, B, U, Q, x0, V0 (see

below for details), or string ‘use fixed/free’.
fixed If constraint[[elem]] = 'use fixed/free', a list with 8 matrices

Z, A, R, B, U, Q, x0, V0.
free If constraint[[elem]] = 'use fixed/free', a list with 8 matrices Z,

A, R, B, U, Q, x0, V0.
inits A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying initial values

for parameters. Dimensions are given in the class ‘marssm’ section.
miss.value Specifies missing value representation (default is -99).
method The method used for estimation: ‘kem’ for KalmanEM, ‘BFGS’ for

quasi-Newton.
control List of estimation options. For the EM algorithm, these include

the elements minit, maxit, abstol, iter.V0, safe and trace. For
Monte Carlo initialization, these include the elements MCInit, numInits, nu-
mInitSteps and boundsInits. See class ‘marssMLE’ section for details.

Component constraint is a convenient way to specify model structure
for certain common cases. If constraint = 'use fixed/free', both fixed
and free must be provided. See the class ‘marssm’ section for how to specify
fixed and free matrices. The function MARSS() calls popWrap() to create a
‘popWrap’ object, then is.marssm() to coerce this object to class ‘marssm’
for the estimation function.

The popWrap() function calls checkPopWrap() to check user inputs from
MARSS(). Valid constraints are below.

A May be either the string ‘scaling’ or the string ‘zero’ to specify a column
vector of zeros (a = 0).

B String ‘identity’=‘ones’ or a numeric matrix specifying a fixed B matrix.
The string ‘zero’ may be used to specify a m×m matrix of zeros (B = 0).

Q String ‘unconstrained’, ‘diagonal and unequal’, ‘diagonal and equal’, or
‘equalvarcov’. May also be numeric or character vector of class factor
specifying shared diagonal values or a numeric matrix specifying a fixed
Q matrix.
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R String ‘unconstrained’, ‘diagonal and unequal’, ‘diagonal and equal’, or
‘equalvarcov’. May also be numeric or character vector of class factor
specifying shared diagonal values or a numeric matrix specifying a fixed
R matrix.

U String ‘unconstrained’=‘unequal’, or ‘equal’. May also be numeric or char-
acter vector of class factor specifying shared u elements or a m×1 numeric
matrix specifying fixed u values. The string ‘zero’ may be used to specify
a column vector of zeros (u = 0).

x0 String ‘unconstrained’=‘unequal’, or ‘equal’. May also be vector of class
factor specifying shared π (t = 1) values or a m × 1 numeric matrix
specifying fixed π (t = 1) values. The string ‘zero’ may be used to specify
a column vector of zeros (π = 0).

Z A vector of class factor specifying which y time series correspond to which
state time series (the xs) or a numeric matrix n × m specifying the Z
matrix. The string ‘identity’ can be used to specify a n×n identity matrix
and string ‘ones’ may be used to specify a column vector of n ones.

B.3 ML estimation objects: class ‘marssMLE’

Objects of class ‘marssMLE’ specify maximum-likelihood estimation for a
MARSS model, both before and after fitting. A minimal ‘marssMLE’ object
contains components model, start and control, which must be present for
estimation by functions like MARSSkem().

model MARSS model specification (an object of class ‘marssm’).
start List with 7 matrices A, R, B, U, Q, x0, V0, specifying initial values for

parameters. Dimensions are given in the class ‘marssm’ section.
control A list specifying estimation options. For method=‘kem’, these are

minit Minimum number of iterations in the maximization algorithm.
maxit Maximum number of iterations in the maximization algorithm.
abstol Optional tolerance for log-likelihood change. If log-likelihood de-

creases less than this amount relative to the previous iteration, the
EM algorithm exits.

iter.V0 Maximum number of iterations for final likelihood calculation
with V0 = 0.

trace A positive integer. If not zero, a record will be created of each vari-
able the maximization iterations. The information recorded depends
on the maximization method.

safe If TRUE, MARSSkem() will rerun MARSSkf() after each individual
parameter update rather than only after all parameters are updated.

MCInit Use Monte Carlo initialization?
numInits Number of random initial value draws.
numInitSteps Number of iterations for each initial value draw.
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boundsInits Bounds on the uniform distributions from which initial values
will be drawn. (Note that bounds for the covariance matrices Q and
R, which require positive values, are specified in logs.)

silent Suppresses printing of progress bar and convergence information.

MARSSkem() appends the following components to the ‘marssMLE’ object:

method A string specifying the estimation method (‘kem’ for estimation by
MARSSkem()).

par A list with 8 matrices of estimated parameter values Z, A, R, B, U, Q, x0,
V0. If there are fixed elements in the matrices, the corresponding elements
in $par are set to the fixed values.

kf A list containing Kalman filter/smoother output. See Chapter 2
numIter Number of iterations required for convergence.
convergence Convergence status.
logLik the exact Log-likelihood. See Section 5.2.
errors any error messages
iter.record record of the parameter values at each iteration (if control$trace=1)

Several functions append additional components to the ‘marssMLE’ object
passed in. These include:

MARSSaic Appends AIC, AICc, AICbb, AICbp, depending on the AIC fla-
vors requested.

MARSShessian Appends Hessian, gradient, parMean and parSigma.
MARSSparamCIs Appends par.se, par.bias, par.upCI and par.lowCI.
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Package MARSS: The top-level MARSS
functions and the base functions

Package MARSS includes functions for estimating Multivariate Autoregres-
sive State Space models, obtaining confidence intervals for parameters, and
calculating Akaike’s Information Criterion (AIC) for model selection. To make
the package both flexible and easy to use, it is designed in two levels. At the
base level, the programmer can interact directly with the estimation functions,
using two kinds of R objects: objects of the model specification class ‘marssm’,
and objects of estimation classes such as ‘marssMLE’. At the user level, the
MARSS() function allows model estimation with just one function call, hiding
the details for ease of use. Users create models in an intuitive way by spec-
ifying constraints; the MARSS() function then converts these constraints into
the object structures required by the estimation functions, performing error
checking as necessary.

The two-level package structure allows new users convenient access to the
underlying functions, while maintaining flexibility to incorporate different ap-
plications and algorithms. Developers can use the base object types to write
new functions for their own modeling applications.

To use MARSS(), the user specifies a model by supplying the constraint
argument to MARSS(), using the method argument to specify an estimation
method. Optionally, the user may provide initial values for the free parame-
ters, and specify estimation options; for details see the MARSS() help file. The
function returns an object containing the model, parameter values and esti-
mation details. The user may pass the returned object to MARSSboot(), which
generates bootstrap parameter estimates, or to MARSSaic(), which calculates
various versions of AIC for model selection.

Figure 1 shows the underlying base level operations MARSS()performs.
The function creates a wrapper object of class ‘popWrap’. It then calls the
as.marssm( ) method for ‘popWrap’ to create a marssm model specification
object from the constraints provided. This model object, initial values and
control information are the minimal information required by the estimation
functions, and are combined into an object of class appropriate for the esti-
mation method. The estimation function adds to this object the estimated
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parameter values, estimation details, and other function-specific components,
and then returns the augmented object.

Fig. C.1. Two-level structure of the MARSS package. Rectangles represent func-
tions; ovals represent objects.
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